Pseudo-Energy-Preserving Explicit Runge-Kutta Methods

Using a recent characterization of energy-preserving B-series, we derive the explicit conditions on the coefficients of a Runge-Kutta method that ensure energy preservation (for Hamiltonian systems) up to a given order in the step size, which we refer to as the pseudo-energy-preserving (PEP) order....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Gabriel A Barrios de León, Ketcheson, David I, Ranocha, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gabriel A Barrios de León
Ketcheson, David I
Ranocha, Hendrik
description Using a recent characterization of energy-preserving B-series, we derive the explicit conditions on the coefficients of a Runge-Kutta method that ensure energy preservation (for Hamiltonian systems) up to a given order in the step size, which we refer to as the pseudo-energy-preserving (PEP) order. We study explicit Runge-Kutta methods with PEP order higher than their classical order. We provide examples of such methods up to PEP order six, and test them on Hamiltonian ODE and PDE systems. We find that these methods behave similarly to exactly energy-conservative methods over moderate time intervals and exhibit significantly smaller errors, relative to other Runge-Kutta methods of the same order, for moderately long-time simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3083763711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083763711</sourcerecordid><originalsourceid>FETCH-proquest_journals_30837637113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDShOLU3J13XNSy1Kr9QNKEotTi0qy8xLV3CtKMjJTM4sUQgqzUtP1fUuLSlJVPBNLcnITynmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4YwMLY3MzY3NDQ2PiVAEAoB81Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083763711</pqid></control><display><type>article</type><title>Pseudo-Energy-Preserving Explicit Runge-Kutta Methods</title><source>Free E- Journals</source><creator>Gabriel A Barrios de León ; Ketcheson, David I ; Ranocha, Hendrik</creator><creatorcontrib>Gabriel A Barrios de León ; Ketcheson, David I ; Ranocha, Hendrik</creatorcontrib><description>Using a recent characterization of energy-preserving B-series, we derive the explicit conditions on the coefficients of a Runge-Kutta method that ensure energy preservation (for Hamiltonian systems) up to a given order in the step size, which we refer to as the pseudo-energy-preserving (PEP) order. We study explicit Runge-Kutta methods with PEP order higher than their classical order. We provide examples of such methods up to PEP order six, and test them on Hamiltonian ODE and PDE systems. We find that these methods behave similarly to exactly energy-conservative methods over moderate time intervals and exhibit significantly smaller errors, relative to other Runge-Kutta methods of the same order, for moderately long-time simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hamiltonian functions ; Runge-Kutta method</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gabriel A Barrios de León</creatorcontrib><creatorcontrib>Ketcheson, David I</creatorcontrib><creatorcontrib>Ranocha, Hendrik</creatorcontrib><title>Pseudo-Energy-Preserving Explicit Runge-Kutta Methods</title><title>arXiv.org</title><description>Using a recent characterization of energy-preserving B-series, we derive the explicit conditions on the coefficients of a Runge-Kutta method that ensure energy preservation (for Hamiltonian systems) up to a given order in the step size, which we refer to as the pseudo-energy-preserving (PEP) order. We study explicit Runge-Kutta methods with PEP order higher than their classical order. We provide examples of such methods up to PEP order six, and test them on Hamiltonian ODE and PDE systems. We find that these methods behave similarly to exactly energy-conservative methods over moderate time intervals and exhibit significantly smaller errors, relative to other Runge-Kutta methods of the same order, for moderately long-time simulations.</description><subject>Hamiltonian functions</subject><subject>Runge-Kutta method</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDShOLU3J13XNSy1Kr9QNKEotTi0qy8xLV3CtKMjJTM4sUQgqzUtP1fUuLSlJVPBNLcnITynmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4YwMLY3MzY3NDQ2PiVAEAoB81Dg</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Gabriel A Barrios de León</creator><creator>Ketcheson, David I</creator><creator>Ranocha, Hendrik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240722</creationdate><title>Pseudo-Energy-Preserving Explicit Runge-Kutta Methods</title><author>Gabriel A Barrios de León ; Ketcheson, David I ; Ranocha, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30837637113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hamiltonian functions</topic><topic>Runge-Kutta method</topic><toplevel>online_resources</toplevel><creatorcontrib>Gabriel A Barrios de León</creatorcontrib><creatorcontrib>Ketcheson, David I</creatorcontrib><creatorcontrib>Ranocha, Hendrik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriel A Barrios de León</au><au>Ketcheson, David I</au><au>Ranocha, Hendrik</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pseudo-Energy-Preserving Explicit Runge-Kutta Methods</atitle><jtitle>arXiv.org</jtitle><date>2024-07-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Using a recent characterization of energy-preserving B-series, we derive the explicit conditions on the coefficients of a Runge-Kutta method that ensure energy preservation (for Hamiltonian systems) up to a given order in the step size, which we refer to as the pseudo-energy-preserving (PEP) order. We study explicit Runge-Kutta methods with PEP order higher than their classical order. We provide examples of such methods up to PEP order six, and test them on Hamiltonian ODE and PDE systems. We find that these methods behave similarly to exactly energy-conservative methods over moderate time intervals and exhibit significantly smaller errors, relative to other Runge-Kutta methods of the same order, for moderately long-time simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3083763711
source Free E- Journals
subjects Hamiltonian functions
Runge-Kutta method
title Pseudo-Energy-Preserving Explicit Runge-Kutta Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pseudo-Energy-Preserving%20Explicit%20Runge-Kutta%20Methods&rft.jtitle=arXiv.org&rft.au=Gabriel%20A%20Barrios%20de%20Le%C3%B3n&rft.date=2024-07-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3083763711%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083763711&rft_id=info:pmid/&rfr_iscdi=true