Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation
We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedne...
Gespeichert in:
Veröffentlicht in: | Journal of time series econometrics 2024, Vol.16 (1), p.1-27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of time series econometrics |
container_volume | 16 |
creator | Xu, Yongdeng |
description | We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods. |
doi_str_mv | 10.1515/jtse-2022-0018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083707923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083707923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b43d6538ec213b708e33756d631b48d9c100f6b4e54671ea5948db41e84c4d133</originalsourceid><addsrcrecordid>eNptkEtPwzAQhCMEEqVw5WyJc4o3tvPgVkWlRWqFqIBrlMemdUnjYDtA_z0JQSoHTrua_XbsHce5BjoBAeJ2Zw26HvU8l1IIT5wRRBxciLzw9E9_7lwYs6PUF2EgRk711KZGklX6JfftnizlG1Zyq1RBZsbKfWqlqokqySvmVmmyaisrm0rm3eADyUzrXlQFVqQ1st4Qu-3UOI7d-XQdL8gaG40Ga_tjdOmclWll8Oq3jp2X-9lzvHCXj_OHeLp0c-Yz62acFb5gIeYesCygITIWCL_wGWQ8LKIcKC39jKPgfgCYiqhTMw4Y8pwXwNjYuRl8G63eWzQ22alW192TCaMhC2gQeT01GahcK2M0lkmju4v1IQGa9IkmfaJJn2jSJ9otkGEBc1VLc8Sjbkoj4fXI3YB8ppVFXeBGt4euOX7gf2_wAdg3NdGHAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083707923</pqid></control><display><type>article</type><title>Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation</title><source>De Gruyter journals</source><creator>Xu, Yongdeng</creator><creatorcontrib>Xu, Yongdeng</creatorcontrib><description>We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.</description><identifier>ISSN: 1941-1928</identifier><identifier>EISSN: 1941-1928</identifier><identifier>EISSN: 2194-6507</identifier><identifier>DOI: 10.1515/jtse-2022-0018</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>C01 ; C32 ; C52 ; HEAVY ; Maximum likelihood method ; Monte Carlo simulation ; Multivariate analysis ; QML ; realized GARCH ; Securities markets ; Spillover effect ; vector MEM ; Volatility</subject><ispartof>Journal of time series econometrics, 2024, Vol.16 (1), p.1-27</ispartof><rights>2023 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-b43d6538ec213b708e33756d631b48d9c100f6b4e54671ea5948db41e84c4d133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jtse-2022-0018/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jtse-2022-0018/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,778,782,4012,27906,27907,27908,66505,68289</link.rule.ids></links><search><creatorcontrib>Xu, Yongdeng</creatorcontrib><title>Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation</title><title>Journal of time series econometrics</title><description>We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.</description><subject>C01</subject><subject>C32</subject><subject>C52</subject><subject>HEAVY</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><subject>QML</subject><subject>realized GARCH</subject><subject>Securities markets</subject><subject>Spillover effect</subject><subject>vector MEM</subject><subject>Volatility</subject><issn>1941-1928</issn><issn>1941-1928</issn><issn>2194-6507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkEtPwzAQhCMEEqVw5WyJc4o3tvPgVkWlRWqFqIBrlMemdUnjYDtA_z0JQSoHTrua_XbsHce5BjoBAeJ2Zw26HvU8l1IIT5wRRBxciLzw9E9_7lwYs6PUF2EgRk711KZGklX6JfftnizlG1Zyq1RBZsbKfWqlqokqySvmVmmyaisrm0rm3eADyUzrXlQFVqQ1st4Qu-3UOI7d-XQdL8gaG40Ga_tjdOmclWll8Oq3jp2X-9lzvHCXj_OHeLp0c-Yz62acFb5gIeYesCygITIWCL_wGWQ8LKIcKC39jKPgfgCYiqhTMw4Y8pwXwNjYuRl8G63eWzQ22alW192TCaMhC2gQeT01GahcK2M0lkmju4v1IQGa9IkmfaJJn2jSJ9otkGEBc1VLc8Sjbkoj4fXI3YB8ppVFXeBGt4euOX7gf2_wAdg3NdGHAw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xu, Yongdeng</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2024</creationdate><title>Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation</title><author>Xu, Yongdeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b43d6538ec213b708e33756d631b48d9c100f6b4e54671ea5948db41e84c4d133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C01</topic><topic>C32</topic><topic>C52</topic><topic>HEAVY</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><topic>QML</topic><topic>realized GARCH</topic><topic>Securities markets</topic><topic>Spillover effect</topic><topic>vector MEM</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yongdeng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of time series econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yongdeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation</atitle><jtitle>Journal of time series econometrics</jtitle><date>2024</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1941-1928</issn><eissn>1941-1928</eissn><eissn>2194-6507</eissn><abstract>We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jtse-2022-0018</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1941-1928 |
ispartof | Journal of time series econometrics, 2024, Vol.16 (1), p.1-27 |
issn | 1941-1928 1941-1928 2194-6507 |
language | eng |
recordid | cdi_proquest_journals_3083707923 |
source | De Gruyter journals |
subjects | C01 C32 C52 HEAVY Maximum likelihood method Monte Carlo simulation Multivariate analysis QML realized GARCH Securities markets Spillover effect vector MEM Volatility |
title | Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi%20Maximum%20Likelihood%20Estimation%20of%20Vector%20Multiplicative%20Error%20Model%20using%20the%20ECCC-GARCH%20Representation&rft.jtitle=Journal%20of%20time%20series%20econometrics&rft.au=Xu,%20Yongdeng&rft.date=2024&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1941-1928&rft.eissn=1941-1928&rft_id=info:doi/10.1515/jtse-2022-0018&rft_dat=%3Cproquest_cross%3E3083707923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083707923&rft_id=info:pmid/&rfr_iscdi=true |