Differences Between Robin and Neumann Eigenvalues on Metric Graphs
We consider the Laplacian on a metric graph, equipped with Robin ( δ -type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff c...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2024-08, Vol.25 (8), p.3859-3898 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3898 |
---|---|
container_issue | 8 |
container_start_page | 3859 |
container_title | Annales Henri Poincaré |
container_volume | 25 |
creator | Band, Ram Schanz, Holger Sofer, Gilad |
description | We consider the Laplacian on a metric graph, equipped with Robin (
δ
-type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021.
arXiv:2008.07400
). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes. |
doi_str_mv | 10.1007/s00023-023-01401-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083661869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083661869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-1ImPtJSCVEBCcLYcZ11StU6xUxB_j9sguHEY7Uo7M7s7hJxTuKQAxVUEAMbzPagAmrMDMqCCiRykpIe_PS-OyUmMSwDKSq4GZHzTOIcBvcWYjbH7RPTZc1s1PjO-zh5xuzbeZ9Nmgf7DrLaJ1frsAbvQ2GwWzOYtnpIjZ1YRz37qkLzeTl8md_n8aXY_uZ7nllPV5cIpw6yR3JSiUEBVWYAzdoRYiTTh9agybCSryjHkUsiyrsHWhURVKKlq5ENy0ftuQvueDun0st0Gn1ZqDiVPf5ZSJRbrWTa0MQZ0ehOatQlfmoLeZaX7rPQeu6w0SyLei2Ii-wWGP-t_VN9LfmtO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083661869</pqid></control><display><type>article</type><title>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</title><source>SpringerLink (Online service)</source><creator>Band, Ram ; Schanz, Holger ; Sofer, Gilad</creator><creatorcontrib>Band, Ram ; Schanz, Holger ; Sofer, Gilad</creatorcontrib><description>We consider the Laplacian on a metric graph, equipped with Robin (
δ
-type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021.
arXiv:2008.07400
). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-023-01401-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Eigenvectors ; Elementary Particles ; Graph theory ; Lower bounds ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2024-08, Vol.25 (8), p.3859-3898</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</citedby><cites>FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</cites><orcidid>0000-0003-0864-7557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-023-01401-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-023-01401-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Band, Ram</creatorcontrib><creatorcontrib>Schanz, Holger</creatorcontrib><creatorcontrib>Sofer, Gilad</creatorcontrib><title>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We consider the Laplacian on a metric graph, equipped with Robin (
δ
-type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021.
arXiv:2008.07400
). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.</description><subject>Apexes</subject><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Elementary Particles</subject><subject>Graph theory</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-1ImPtJSCVEBCcLYcZ11StU6xUxB_j9sguHEY7Uo7M7s7hJxTuKQAxVUEAMbzPagAmrMDMqCCiRykpIe_PS-OyUmMSwDKSq4GZHzTOIcBvcWYjbH7RPTZc1s1PjO-zh5xuzbeZ9Nmgf7DrLaJ1frsAbvQ2GwWzOYtnpIjZ1YRz37qkLzeTl8md_n8aXY_uZ7nllPV5cIpw6yR3JSiUEBVWYAzdoRYiTTh9agybCSryjHkUsiyrsHWhURVKKlq5ENy0ftuQvueDun0st0Gn1ZqDiVPf5ZSJRbrWTa0MQZ0ehOatQlfmoLeZaX7rPQeu6w0SyLei2Ii-wWGP-t_VN9LfmtO</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Band, Ram</creator><creator>Schanz, Holger</creator><creator>Sofer, Gilad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0864-7557</orcidid></search><sort><creationdate>20240801</creationdate><title>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</title><author>Band, Ram ; Schanz, Holger ; Sofer, Gilad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Elementary Particles</topic><topic>Graph theory</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Band, Ram</creatorcontrib><creatorcontrib>Schanz, Holger</creatorcontrib><creatorcontrib>Sofer, Gilad</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Band, Ram</au><au>Schanz, Holger</au><au>Sofer, Gilad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>3859</spage><epage>3898</epage><pages>3859-3898</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We consider the Laplacian on a metric graph, equipped with Robin (
δ
-type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021.
arXiv:2008.07400
). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-023-01401-2</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-0864-7557</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2024-08, Vol.25 (8), p.3859-3898 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_proquest_journals_3083661869 |
source | SpringerLink (Online service) |
subjects | Apexes Classical and Quantum Gravitation Dynamical Systems and Ergodic Theory Eigenvalues Eigenvectors Elementary Particles Graph theory Lower bounds Mathematical and Computational Physics Mathematical Methods in Physics Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativity Theory Theoretical |
title | Differences Between Robin and Neumann Eigenvalues on Metric Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20Between%20Robin%20and%20Neumann%20Eigenvalues%20on%20Metric%20Graphs&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Band,%20Ram&rft.date=2024-08-01&rft.volume=25&rft.issue=8&rft.spage=3859&rft.epage=3898&rft.pages=3859-3898&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-023-01401-2&rft_dat=%3Cproquest_cross%3E3083661869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083661869&rft_id=info:pmid/&rfr_iscdi=true |