Differences Between Robin and Neumann Eigenvalues on Metric Graphs

We consider the Laplacian on a metric graph, equipped with Robin ( δ -type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2024-08, Vol.25 (8), p.3859-3898
Hauptverfasser: Band, Ram, Schanz, Holger, Sofer, Gilad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3898
container_issue 8
container_start_page 3859
container_title Annales Henri Poincaré
container_volume 25
creator Band, Ram
Schanz, Holger
Sofer, Gilad
description We consider the Laplacian on a metric graph, equipped with Robin ( δ -type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021. arXiv:2008.07400 ). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.
doi_str_mv 10.1007/s00023-023-01401-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083661869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083661869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-1ImPtJSCVEBCcLYcZ11StU6xUxB_j9sguHEY7Uo7M7s7hJxTuKQAxVUEAMbzPagAmrMDMqCCiRykpIe_PS-OyUmMSwDKSq4GZHzTOIcBvcWYjbH7RPTZc1s1PjO-zh5xuzbeZ9Nmgf7DrLaJ1frsAbvQ2GwWzOYtnpIjZ1YRz37qkLzeTl8md_n8aXY_uZ7nllPV5cIpw6yR3JSiUEBVWYAzdoRYiTTh9agybCSryjHkUsiyrsHWhURVKKlq5ENy0ftuQvueDun0st0Gn1ZqDiVPf5ZSJRbrWTa0MQZ0ehOatQlfmoLeZaX7rPQeu6w0SyLei2Ii-wWGP-t_VN9LfmtO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083661869</pqid></control><display><type>article</type><title>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</title><source>SpringerLink (Online service)</source><creator>Band, Ram ; Schanz, Holger ; Sofer, Gilad</creator><creatorcontrib>Band, Ram ; Schanz, Holger ; Sofer, Gilad</creatorcontrib><description>We consider the Laplacian on a metric graph, equipped with Robin ( δ -type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021. arXiv:2008.07400 ). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-023-01401-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Eigenvectors ; Elementary Particles ; Graph theory ; Lower bounds ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2024-08, Vol.25 (8), p.3859-3898</ispartof><rights>Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</citedby><cites>FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</cites><orcidid>0000-0003-0864-7557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-023-01401-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-023-01401-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Band, Ram</creatorcontrib><creatorcontrib>Schanz, Holger</creatorcontrib><creatorcontrib>Sofer, Gilad</creatorcontrib><title>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We consider the Laplacian on a metric graph, equipped with Robin ( δ -type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021. arXiv:2008.07400 ). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.</description><subject>Apexes</subject><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Elementary Particles</subject><subject>Graph theory</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrEObB-1ImPtJSCVEBCcLYcZ11StU6xUxB_j9sguHEY7Uo7M7s7hJxTuKQAxVUEAMbzPagAmrMDMqCCiRykpIe_PS-OyUmMSwDKSq4GZHzTOIcBvcWYjbH7RPTZc1s1PjO-zh5xuzbeZ9Nmgf7DrLaJ1frsAbvQ2GwWzOYtnpIjZ1YRz37qkLzeTl8md_n8aXY_uZ7nllPV5cIpw6yR3JSiUEBVWYAzdoRYiTTh9agybCSryjHkUsiyrsHWhURVKKlq5ENy0ftuQvueDun0st0Gn1ZqDiVPf5ZSJRbrWTa0MQZ0ehOatQlfmoLeZaX7rPQeu6w0SyLei2Ii-wWGP-t_VN9LfmtO</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Band, Ram</creator><creator>Schanz, Holger</creator><creator>Sofer, Gilad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0864-7557</orcidid></search><sort><creationdate>20240801</creationdate><title>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</title><author>Band, Ram ; Schanz, Holger ; Sofer, Gilad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4f9a2ca63a8479019870fac5eeb49a23d5ba256bbf2e36468dd0cd76e97969de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Elementary Particles</topic><topic>Graph theory</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Band, Ram</creatorcontrib><creatorcontrib>Schanz, Holger</creatorcontrib><creatorcontrib>Sofer, Gilad</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Band, Ram</au><au>Schanz, Holger</au><au>Sofer, Gilad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences Between Robin and Neumann Eigenvalues on Metric Graphs</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>3859</spage><epage>3898</epage><pages>3859-3898</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We consider the Laplacian on a metric graph, equipped with Robin ( δ -type) vertex condition at some of the graph vertices and Neumann–Kirchhoff condition at all others. The corresponding eigenvalues are called Robin eigenvalues, whereas they are called Neumann eigenvalues if the Neumann–Kirchhoff condition is imposed at all vertices. The sequence of differences between these pairs of eigenvalues is called the Robin–Neumann gap. We prove that the limiting mean value of this sequence exists and equals a geometric quantity, analogous to the one obtained for planar domains by Rudnick et al. (Commun Math Phys, 2021. arXiv:2008.07400 ). Moreover, we show that the sequence is uniformly bounded and provide explicit upper and lower bounds. We also study the possible accumulation points of the sequence and relate those to the associated probability distribution of the gaps. To prove our main results, we prove a local Weyl law, as well as explicit expressions for the second moments of the eigenfunction scattering amplitudes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-023-01401-2</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-0864-7557</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2024-08, Vol.25 (8), p.3859-3898
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_3083661869
source SpringerLink (Online service)
subjects Apexes
Classical and Quantum Gravitation
Dynamical Systems and Ergodic Theory
Eigenvalues
Eigenvectors
Elementary Particles
Graph theory
Lower bounds
Mathematical and Computational Physics
Mathematical Methods in Physics
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Theoretical
title Differences Between Robin and Neumann Eigenvalues on Metric Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20Between%20Robin%20and%20Neumann%20Eigenvalues%20on%20Metric%20Graphs&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Band,%20Ram&rft.date=2024-08-01&rft.volume=25&rft.issue=8&rft.spage=3859&rft.epage=3898&rft.pages=3859-3898&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-023-01401-2&rft_dat=%3Cproquest_cross%3E3083661869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083661869&rft_id=info:pmid/&rfr_iscdi=true