Algebraic Localization of Wannier Functions Implies Chern Triviality in Non-periodic Insulators

For gapped periodic systems (insulators), it has been established that the insulator is topologically trivial (i.e., its Chern number is equal to 0) if and only if its Fermi projector admits an orthogonal basis with finite second moment (i.e., all basis elements satisfy ∫ | x | 2 | w ( x ) | 2 d x &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2024-08, Vol.25 (8), p.3911-3926
Hauptverfasser: Lu, Jianfeng, Stubbs, Kevin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For gapped periodic systems (insulators), it has been established that the insulator is topologically trivial (i.e., its Chern number is equal to 0) if and only if its Fermi projector admits an orthogonal basis with finite second moment (i.e., all basis elements satisfy ∫ | x | 2 | w ( x ) | 2 d x < ∞ ). In this paper, we extend one direction of this result to non-periodic gapped systems. In particular, we show that the existence of an orthogonal basis with slightly more decay ( ∫ | x | 2 + ϵ | w ( x ) | 2 d x < ∞ for any ϵ > 0 ) is a sufficient condition to conclude that the Chern marker, the natural generalization of the Chern number, vanishes.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-024-01444-z