Polynomial-like iterative equation on Riesz spaces

In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2024-09, Vol.28 (4), p.55, Article 55
Hauptverfasser: Gopalakrishna, Chaitanya, Zhang, Weinian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 55
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 28
creator Gopalakrishna, Chaitanya
Zhang, Weinian
description In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first obtain the existence and uniqueness of order-preserving solutions on convex complete sublattices of Riesz spaces. Then, restricting to R and R n , special cases of Riesz space, we obtain semi-continuous solutions and integrable solutions, respectively. Finally, we present more special cases of Riesz space in which solutions to the iterative equation can be discussed.
doi_str_mv 10.1007/s11117-024-01072-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083309330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083309330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-94c71f4bc66d9223eb58e4192c02f7752ab3242cf75231723fa76474746c0d963</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPBU8RyeTtGmOsvgFC4roOaTZVLp2292kFdZf72gFb84H8w7vvYHH2LmASwGgr5Kg0hxQcRCgkYsDNhM5AYOlOCQsy5wLNHjMTlJaA7FAwYzhU9_uu37TuJa3zXvImiFENzQfIQu7kUDfZTTPTUifWdo6H9IpO6pdm8LZ752z19ubl8U9Xz7ePSyul9wjwMCN8lrUqvJFsTKIMlR5GZQw6AFrrXN0lUSFviYohUZZO10oTV14WJlCztnF5LuN_W4MabDrfowdvbQSSinB0BILJ5aPfUox1HYbm42LeyvAfmdjp2wsZWN_srGCRHISJSJ3byH-Wf-j-gJDQWSa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083309330</pqid></control><display><type>article</type><title>Polynomial-like iterative equation on Riesz spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gopalakrishna, Chaitanya ; Zhang, Weinian</creator><creatorcontrib>Gopalakrishna, Chaitanya ; Zhang, Weinian</creatorcontrib><description>In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first obtain the existence and uniqueness of order-preserving solutions on convex complete sublattices of Riesz spaces. Then, restricting to R and R n , special cases of Riesz space, we obtain semi-continuous solutions and integrable solutions, respectively. Finally, we present more special cases of Riesz space in which solutions to the iterative equation can be discussed.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-024-01072-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Euclidean space ; Fixed points (mathematics) ; Fourier Analysis ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Metric space ; Operator Theory ; Polynomials ; Potential Theory ; Schauder fixpoint theorem ; Uniqueness theorems</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2024-09, Vol.28 (4), p.55, Article 55</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-94c71f4bc66d9223eb58e4192c02f7752ab3242cf75231723fa76474746c0d963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-024-01072-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-024-01072-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gopalakrishna, Chaitanya</creatorcontrib><creatorcontrib>Zhang, Weinian</creatorcontrib><title>Polynomial-like iterative equation on Riesz spaces</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first obtain the existence and uniqueness of order-preserving solutions on convex complete sublattices of Riesz spaces. Then, restricting to R and R n , special cases of Riesz space, we obtain semi-continuous solutions and integrable solutions, respectively. Finally, we present more special cases of Riesz space in which solutions to the iterative equation can be discussed.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Euclidean space</subject><subject>Fixed points (mathematics)</subject><subject>Fourier Analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Operator Theory</subject><subject>Polynomials</subject><subject>Potential Theory</subject><subject>Schauder fixpoint theorem</subject><subject>Uniqueness theorems</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPBU8RyeTtGmOsvgFC4roOaTZVLp2292kFdZf72gFb84H8w7vvYHH2LmASwGgr5Kg0hxQcRCgkYsDNhM5AYOlOCQsy5wLNHjMTlJaA7FAwYzhU9_uu37TuJa3zXvImiFENzQfIQu7kUDfZTTPTUifWdo6H9IpO6pdm8LZ752z19ubl8U9Xz7ePSyul9wjwMCN8lrUqvJFsTKIMlR5GZQw6AFrrXN0lUSFviYohUZZO10oTV14WJlCztnF5LuN_W4MabDrfowdvbQSSinB0BILJ5aPfUox1HYbm42LeyvAfmdjp2wsZWN_srGCRHISJSJ3byH-Wf-j-gJDQWSa</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gopalakrishna, Chaitanya</creator><creator>Zhang, Weinian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>Polynomial-like iterative equation on Riesz spaces</title><author>Gopalakrishna, Chaitanya ; Zhang, Weinian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-94c71f4bc66d9223eb58e4192c02f7752ab3242cf75231723fa76474746c0d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Euclidean space</topic><topic>Fixed points (mathematics)</topic><topic>Fourier Analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Operator Theory</topic><topic>Polynomials</topic><topic>Potential Theory</topic><topic>Schauder fixpoint theorem</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishna, Chaitanya</creatorcontrib><creatorcontrib>Zhang, Weinian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopalakrishna, Chaitanya</au><au>Zhang, Weinian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial-like iterative equation on Riesz spaces</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>55</spage><pages>55-</pages><artnum>55</artnum><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper we investigate the polynomial-like iterative equation on Riesz spaces. Since a Riesz space does not need to have a metric space structure, neither the Schauder fixed point theorem nor the Banach fixed point theorem is available. Using the Knaster–Tarski fixed point theorem, we first obtain the existence and uniqueness of order-preserving solutions on convex complete sublattices of Riesz spaces. Then, restricting to R and R n , special cases of Riesz space, we obtain semi-continuous solutions and integrable solutions, respectively. Finally, we present more special cases of Riesz space in which solutions to the iterative equation can be discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-024-01072-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2024-09, Vol.28 (4), p.55, Article 55
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_3083309330
source SpringerLink Journals - AutoHoldings
subjects Calculus of Variations and Optimal Control
Optimization
Econometrics
Euclidean space
Fixed points (mathematics)
Fourier Analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Metric space
Operator Theory
Polynomials
Potential Theory
Schauder fixpoint theorem
Uniqueness theorems
title Polynomial-like iterative equation on Riesz spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial-like%20iterative%20equation%20on%20Riesz%20spaces&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Gopalakrishna,%20Chaitanya&rft.date=2024-09-01&rft.volume=28&rft.issue=4&rft.spage=55&rft.pages=55-&rft.artnum=55&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-024-01072-1&rft_dat=%3Cproquest_cross%3E3083309330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083309330&rft_id=info:pmid/&rfr_iscdi=true