Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects

We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Max...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2024-08, Vol.302 (8), p.1291-1304
Hauptverfasser: Sudarmozhi, K., Iranian, D., Alhazmi, Hadil, Khan, Ilyas, Aljohani, A. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1304
container_issue 8
container_start_page 1291
container_title Colloid and polymer science
container_volume 302
creator Sudarmozhi, K.
Iranian, D.
Alhazmi, Hadil
Khan, Ilyas
Aljohani, A. F.
description We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Maxwell fluid within a channel. The governing equations for momentum, concentration, and energy are renovated into ODEs for concentrated analysis using a similarity transformation. Dimensionless velocity, temperature, and concentration fields corresponding to steady motions of Maxwell fluid over a channel are numerically recognized using the bvp4c inbuilt software in MATLAB. We validated our results with existing work to check the gained results and got an excellent agreement. The impression of physical parameters on fluid motion is plotted and debated. The quantitative outcome of this study is that the Deborah number surges, and both velocity and temperature experience enhancement while the concentration within the fluid diminishes. This knowledge can be applied to various fields, such as material processing, biomedical engineering, and environmental sciences, to optimize processes and design systems accordingly. The outcomes and key findings of this study indicate that concentration distribution declines with the introduction of a chemical reaction and a complex Schmidt number. Additionally, the quantitative results of this learning are that the impression of the magnetic parameter is observed, resulting in reduced velocity and temperature profiles, while concentration profiles exhibit an increase across the entire domain. Furthermore, the rise in the Reynolds number corresponds to an escalation in the temperature outline. Graphical Abstract
doi_str_mv 10.1007/s00396-024-05267-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083268375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083268375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1af3a8f52174fc147a3cb348179a2abcef8db65b67510dda9121d72ac69384493</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnquTjybtUdaPFVa8KHgL0zRxu3TbNWlZ9783toI3LzPM4_0ezCPkksI1BVA3AYAXMgUmUsiYVKk8IjMqeJbSjMtjMgMOPBXA3k_JWQgbABCFlDOyXnTb3dBjX3ctNgnGcQh1SDqXPC_vErPGtrVN4ppuP2r4tbfNzz3UVbKv-3XisapHPMJVBOy2NjHJWzSjap2zpg_n5MRhE-zF756Tt4f718UyXb08Pi1uV6lhCvqUouOYu4xRJZyhQiE3JRc5VQUyLI11eVXKrJQqo1BVWFBGK8XQyILnQhR8Tq6m3J3vPgcber3pBh_fCppDzpnMucqii00u47sQvHV65-st-oOmoH8a1VOjOjaqx0a1jBCfoBDN7Yf1f9H_UN8QiHnB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083268375</pqid></control><display><type>article</type><title>Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects</title><source>Springer Nature - Complete Springer Journals</source><creator>Sudarmozhi, K. ; Iranian, D. ; Alhazmi, Hadil ; Khan, Ilyas ; Aljohani, A. F.</creator><creatorcontrib>Sudarmozhi, K. ; Iranian, D. ; Alhazmi, Hadil ; Khan, Ilyas ; Aljohani, A. F.</creatorcontrib><description>We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Maxwell fluid within a channel. The governing equations for momentum, concentration, and energy are renovated into ODEs for concentrated analysis using a similarity transformation. Dimensionless velocity, temperature, and concentration fields corresponding to steady motions of Maxwell fluid over a channel are numerically recognized using the bvp4c inbuilt software in MATLAB. We validated our results with existing work to check the gained results and got an excellent agreement. The impression of physical parameters on fluid motion is plotted and debated. The quantitative outcome of this study is that the Deborah number surges, and both velocity and temperature experience enhancement while the concentration within the fluid diminishes. This knowledge can be applied to various fields, such as material processing, biomedical engineering, and environmental sciences, to optimize processes and design systems accordingly. The outcomes and key findings of this study indicate that concentration distribution declines with the introduction of a chemical reaction and a complex Schmidt number. Additionally, the quantitative results of this learning are that the impression of the magnetic parameter is observed, resulting in reduced velocity and temperature profiles, while concentration profiles exhibit an increase across the entire domain. Furthermore, the rise in the Reynolds number corresponds to an escalation in the temperature outline. Graphical Abstract</description><identifier>ISSN: 0303-402X</identifier><identifier>EISSN: 1435-1536</identifier><identifier>DOI: 10.1007/s00396-024-05267-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical engineering ; Blood flow ; Cardiovascular system ; Channel flow ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Deborah number ; Design optimization ; Design parameters ; Dimensionless analysis ; Energy transfer ; Fluid flow ; Food Science ; Magnetic properties ; Magnetohydrodynamic flow ; Magnetohydrodynamics ; Maxwell fluids ; Nanotechnology and Microengineering ; Physical Chemistry ; Physical properties ; Polymer Sciences ; Reynolds number ; Schmidt number ; Soft and Granular Matter ; Temperature profiles</subject><ispartof>Colloid and polymer science, 2024-08, Vol.302 (8), p.1291-1304</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1af3a8f52174fc147a3cb348179a2abcef8db65b67510dda9121d72ac69384493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00396-024-05267-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00396-024-05267-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sudarmozhi, K.</creatorcontrib><creatorcontrib>Iranian, D.</creatorcontrib><creatorcontrib>Alhazmi, Hadil</creatorcontrib><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Aljohani, A. F.</creatorcontrib><title>Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects</title><title>Colloid and polymer science</title><addtitle>Colloid Polym Sci</addtitle><description>We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Maxwell fluid within a channel. The governing equations for momentum, concentration, and energy are renovated into ODEs for concentrated analysis using a similarity transformation. Dimensionless velocity, temperature, and concentration fields corresponding to steady motions of Maxwell fluid over a channel are numerically recognized using the bvp4c inbuilt software in MATLAB. We validated our results with existing work to check the gained results and got an excellent agreement. The impression of physical parameters on fluid motion is plotted and debated. The quantitative outcome of this study is that the Deborah number surges, and both velocity and temperature experience enhancement while the concentration within the fluid diminishes. This knowledge can be applied to various fields, such as material processing, biomedical engineering, and environmental sciences, to optimize processes and design systems accordingly. The outcomes and key findings of this study indicate that concentration distribution declines with the introduction of a chemical reaction and a complex Schmidt number. Additionally, the quantitative results of this learning are that the impression of the magnetic parameter is observed, resulting in reduced velocity and temperature profiles, while concentration profiles exhibit an increase across the entire domain. Furthermore, the rise in the Reynolds number corresponds to an escalation in the temperature outline. Graphical Abstract</description><subject>Biomedical engineering</subject><subject>Blood flow</subject><subject>Cardiovascular system</subject><subject>Channel flow</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Deborah number</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Dimensionless analysis</subject><subject>Energy transfer</subject><subject>Fluid flow</subject><subject>Food Science</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamic flow</subject><subject>Magnetohydrodynamics</subject><subject>Maxwell fluids</subject><subject>Nanotechnology and Microengineering</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Polymer Sciences</subject><subject>Reynolds number</subject><subject>Schmidt number</subject><subject>Soft and Granular Matter</subject><subject>Temperature profiles</subject><issn>0303-402X</issn><issn>1435-1536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54KnquTjybtUdaPFVa8KHgL0zRxu3TbNWlZ9783toI3LzPM4_0ezCPkksI1BVA3AYAXMgUmUsiYVKk8IjMqeJbSjMtjMgMOPBXA3k_JWQgbABCFlDOyXnTb3dBjX3ctNgnGcQh1SDqXPC_vErPGtrVN4ppuP2r4tbfNzz3UVbKv-3XisapHPMJVBOy2NjHJWzSjap2zpg_n5MRhE-zF756Tt4f718UyXb08Pi1uV6lhCvqUouOYu4xRJZyhQiE3JRc5VQUyLI11eVXKrJQqo1BVWFBGK8XQyILnQhR8Tq6m3J3vPgcber3pBh_fCppDzpnMucqii00u47sQvHV65-st-oOmoH8a1VOjOjaqx0a1jBCfoBDN7Yf1f9H_UN8QiHnB</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sudarmozhi, K.</creator><creator>Iranian, D.</creator><creator>Alhazmi, Hadil</creator><creator>Khan, Ilyas</creator><creator>Aljohani, A. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20240801</creationdate><title>Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects</title><author>Sudarmozhi, K. ; Iranian, D. ; Alhazmi, Hadil ; Khan, Ilyas ; Aljohani, A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1af3a8f52174fc147a3cb348179a2abcef8db65b67510dda9121d72ac69384493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical engineering</topic><topic>Blood flow</topic><topic>Cardiovascular system</topic><topic>Channel flow</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Deborah number</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Dimensionless analysis</topic><topic>Energy transfer</topic><topic>Fluid flow</topic><topic>Food Science</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamic flow</topic><topic>Magnetohydrodynamics</topic><topic>Maxwell fluids</topic><topic>Nanotechnology and Microengineering</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Polymer Sciences</topic><topic>Reynolds number</topic><topic>Schmidt number</topic><topic>Soft and Granular Matter</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudarmozhi, K.</creatorcontrib><creatorcontrib>Iranian, D.</creatorcontrib><creatorcontrib>Alhazmi, Hadil</creatorcontrib><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Aljohani, A. F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Colloid and polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudarmozhi, K.</au><au>Iranian, D.</au><au>Alhazmi, Hadil</au><au>Khan, Ilyas</au><au>Aljohani, A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects</atitle><jtitle>Colloid and polymer science</jtitle><stitle>Colloid Polym Sci</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>302</volume><issue>8</issue><spage>1291</spage><epage>1304</epage><pages>1291-1304</pages><issn>0303-402X</issn><eissn>1435-1536</eissn><abstract>We embarked on an investigation with potential implications for studying blood flow within the cardiovascular system; keeping this application in mind, this investigation aims to provide numerical evaluations for a complex problem involving MHD flow, chemical reactivity, and energy transfer of a Maxwell fluid within a channel. The governing equations for momentum, concentration, and energy are renovated into ODEs for concentrated analysis using a similarity transformation. Dimensionless velocity, temperature, and concentration fields corresponding to steady motions of Maxwell fluid over a channel are numerically recognized using the bvp4c inbuilt software in MATLAB. We validated our results with existing work to check the gained results and got an excellent agreement. The impression of physical parameters on fluid motion is plotted and debated. The quantitative outcome of this study is that the Deborah number surges, and both velocity and temperature experience enhancement while the concentration within the fluid diminishes. This knowledge can be applied to various fields, such as material processing, biomedical engineering, and environmental sciences, to optimize processes and design systems accordingly. The outcomes and key findings of this study indicate that concentration distribution declines with the introduction of a chemical reaction and a complex Schmidt number. Additionally, the quantitative results of this learning are that the impression of the magnetic parameter is observed, resulting in reduced velocity and temperature profiles, while concentration profiles exhibit an increase across the entire domain. Furthermore, the rise in the Reynolds number corresponds to an escalation in the temperature outline. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00396-024-05267-6</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-402X
ispartof Colloid and polymer science, 2024-08, Vol.302 (8), p.1291-1304
issn 0303-402X
1435-1536
language eng
recordid cdi_proquest_journals_3083268375
source Springer Nature - Complete Springer Journals
subjects Biomedical engineering
Blood flow
Cardiovascular system
Channel flow
Characterization and Evaluation of Materials
Chemical reactions
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Deborah number
Design optimization
Design parameters
Dimensionless analysis
Energy transfer
Fluid flow
Food Science
Magnetic properties
Magnetohydrodynamic flow
Magnetohydrodynamics
Maxwell fluids
Nanotechnology and Microengineering
Physical Chemistry
Physical properties
Polymer Sciences
Reynolds number
Schmidt number
Soft and Granular Matter
Temperature profiles
title Computational analysis of MHD channel flow of Maxwell fluid with radiation and chemical reaction effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20analysis%20of%20MHD%20channel%20flow%20of%20Maxwell%20fluid%20with%20radiation%20and%20chemical%20reaction%20effects&rft.jtitle=Colloid%20and%20polymer%20science&rft.au=Sudarmozhi,%20K.&rft.date=2024-08-01&rft.volume=302&rft.issue=8&rft.spage=1291&rft.epage=1304&rft.pages=1291-1304&rft.issn=0303-402X&rft.eissn=1435-1536&rft_id=info:doi/10.1007/s00396-024-05267-6&rft_dat=%3Cproquest_cross%3E3083268375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083268375&rft_id=info:pmid/&rfr_iscdi=true