Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance
Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-07, Vol.136 (31), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 136 |
creator | Zu, Di Ying, Yiran Wei, Qi Xiong, Pei Ahmed, Mortuza Saleque Lin, Zezhou Li, Molly Meng‐Jung Li, Mingjie Xu, Zhihang Chen, Gao Bai, Liqi She, Sixuan Tsang, Yuen Hong Huang, Haitao |
description | Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts.
A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations. |
doi_str_mv | 10.1002/ange.202405756 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083197382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083197382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-9c76707132f6da3dc06431d3cb7ec999c87a5617092e603ead6dad0085fdeeae3</originalsourceid><addsrcrecordid>eNqFkM1O4zAUha3RIE0H2LK2xDqdazuJ4yVUHVoJAeJvGxnnJnWV2sV2xXTHI7Cd15snIVURs2R1paPvnHN1CDlhMGYA_Jd2HY458BwKWZTfyIgVnGVCFvI7GQHkeVbxXP0gP2NcAkDJpRqRv9d_th06-qiNdsZipPfBdh0GeqvXtqGThQ4dDqJ2ce1D2gnOYR-pTjQtkE5dZx1iwIbOXcLQaoPUt_Tu3-vbnVngCukMB90vN84k6x1tfaDn3sdkXUdvFj55o5Put8kaejME-LAaXsEjctDqPuLxxz0kD7-n95NZdnl9MZ-cXWaGFbLMlJGlBMkEb8tGi8ZAmQvWCPMk0SilTCV1UTIJimMJAnUzYA1AVbQNokZxSE73uevgnzcYU730m-CGylpAJZiSouIDNd5TJvgYA7b1OtiVDtuaQb2bv97NX3_OPxjU3vBie9x-QddnVxfT_953PDKNbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083197382</pqid></control><display><type>article</type><title>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zu, Di ; Ying, Yiran ; Wei, Qi ; Xiong, Pei ; Ahmed, Mortuza Saleque ; Lin, Zezhou ; Li, Molly Meng‐Jung ; Li, Mingjie ; Xu, Zhihang ; Chen, Gao ; Bai, Liqi ; She, Sixuan ; Tsang, Yuen Hong ; Huang, Haitao</creator><creatorcontrib>Zu, Di ; Ying, Yiran ; Wei, Qi ; Xiong, Pei ; Ahmed, Mortuza Saleque ; Lin, Zezhou ; Li, Molly Meng‐Jung ; Li, Mingjie ; Xu, Zhihang ; Chen, Gao ; Bai, Liqi ; She, Sixuan ; Tsang, Yuen Hong ; Huang, Haitao</creatorcontrib><description>Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts.
A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202405756</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Charge efficiency ; Charge transfer ; Charge transport ; Electronic structure ; Femtosecond transient absorption spectroscopy ; Heterointerface engineering ; Heterojunctions ; Oxygen ; Oxygen vacancies ; Photocatalysis ; Photocatalysts ; S-scheme heterojunction ; Synergistic effect</subject><ispartof>Angewandte Chemie, 2024-07, Vol.136 (31), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-9c76707132f6da3dc06431d3cb7ec999c87a5617092e603ead6dad0085fdeeae3</cites><orcidid>0000-0002-3861-2702 ; 0009-0003-6019-672X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202405756$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202405756$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zu, Di</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Xiong, Pei</creatorcontrib><creatorcontrib>Ahmed, Mortuza Saleque</creatorcontrib><creatorcontrib>Lin, Zezhou</creatorcontrib><creatorcontrib>Li, Molly Meng‐Jung</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Xu, Zhihang</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Bai, Liqi</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Tsang, Yuen Hong</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><title>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</title><title>Angewandte Chemie</title><description>Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts.
A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations.</description><subject>Absorption spectroscopy</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electronic structure</subject><subject>Femtosecond transient absorption spectroscopy</subject><subject>Heterointerface engineering</subject><subject>Heterojunctions</subject><subject>Oxygen</subject><subject>Oxygen vacancies</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>S-scheme heterojunction</subject><subject>Synergistic effect</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1O4zAUha3RIE0H2LK2xDqdazuJ4yVUHVoJAeJvGxnnJnWV2sV2xXTHI7Cd15snIVURs2R1paPvnHN1CDlhMGYA_Jd2HY458BwKWZTfyIgVnGVCFvI7GQHkeVbxXP0gP2NcAkDJpRqRv9d_th06-qiNdsZipPfBdh0GeqvXtqGThQ4dDqJ2ce1D2gnOYR-pTjQtkE5dZx1iwIbOXcLQaoPUt_Tu3-vbnVngCukMB90vN84k6x1tfaDn3sdkXUdvFj55o5Put8kaejME-LAaXsEjctDqPuLxxz0kD7-n95NZdnl9MZ-cXWaGFbLMlJGlBMkEb8tGi8ZAmQvWCPMk0SilTCV1UTIJimMJAnUzYA1AVbQNokZxSE73uevgnzcYU730m-CGylpAJZiSouIDNd5TJvgYA7b1OtiVDtuaQb2bv97NX3_OPxjU3vBie9x-QddnVxfT_953PDKNbg</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Zu, Di</creator><creator>Ying, Yiran</creator><creator>Wei, Qi</creator><creator>Xiong, Pei</creator><creator>Ahmed, Mortuza Saleque</creator><creator>Lin, Zezhou</creator><creator>Li, Molly Meng‐Jung</creator><creator>Li, Mingjie</creator><creator>Xu, Zhihang</creator><creator>Chen, Gao</creator><creator>Bai, Liqi</creator><creator>She, Sixuan</creator><creator>Tsang, Yuen Hong</creator><creator>Huang, Haitao</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3861-2702</orcidid><orcidid>https://orcid.org/0009-0003-6019-672X</orcidid></search><sort><creationdate>20240729</creationdate><title>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</title><author>Zu, Di ; Ying, Yiran ; Wei, Qi ; Xiong, Pei ; Ahmed, Mortuza Saleque ; Lin, Zezhou ; Li, Molly Meng‐Jung ; Li, Mingjie ; Xu, Zhihang ; Chen, Gao ; Bai, Liqi ; She, Sixuan ; Tsang, Yuen Hong ; Huang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-9c76707132f6da3dc06431d3cb7ec999c87a5617092e603ead6dad0085fdeeae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electronic structure</topic><topic>Femtosecond transient absorption spectroscopy</topic><topic>Heterointerface engineering</topic><topic>Heterojunctions</topic><topic>Oxygen</topic><topic>Oxygen vacancies</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>S-scheme heterojunction</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Di</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Xiong, Pei</creatorcontrib><creatorcontrib>Ahmed, Mortuza Saleque</creatorcontrib><creatorcontrib>Lin, Zezhou</creatorcontrib><creatorcontrib>Li, Molly Meng‐Jung</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Xu, Zhihang</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Bai, Liqi</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Tsang, Yuen Hong</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Di</au><au>Ying, Yiran</au><au>Wei, Qi</au><au>Xiong, Pei</au><au>Ahmed, Mortuza Saleque</au><au>Lin, Zezhou</au><au>Li, Molly Meng‐Jung</au><au>Li, Mingjie</au><au>Xu, Zhihang</au><au>Chen, Gao</au><au>Bai, Liqi</au><au>She, Sixuan</au><au>Tsang, Yuen Hong</au><au>Huang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-07-29</date><risdate>2024</risdate><volume>136</volume><issue>31</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts.
A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202405756</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3861-2702</orcidid><orcidid>https://orcid.org/0009-0003-6019-672X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-07, Vol.136 (31), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_3083197382 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption spectroscopy Charge efficiency Charge transfer Charge transport Electronic structure Femtosecond transient absorption spectroscopy Heterointerface engineering Heterojunctions Oxygen Oxygen vacancies Photocatalysis Photocatalysts S-scheme heterojunction Synergistic effect |
title | Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Vacancies%20Trigger%20Rapid%20Charge%20Transport%20Channels%20at%20the%20Engineered%20Interface%20of%20S%E2%80%90Scheme%20Heterojunction%20for%20Boosting%20Photocatalytic%20Performance&rft.jtitle=Angewandte%20Chemie&rft.au=Zu,%20Di&rft.date=2024-07-29&rft.volume=136&rft.issue=31&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202405756&rft_dat=%3Cproquest_cross%3E3083197382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083197382&rft_id=info:pmid/&rfr_iscdi=true |