Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance

Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-07, Vol.136 (31), p.n/a
Hauptverfasser: Zu, Di, Ying, Yiran, Wei, Qi, Xiong, Pei, Ahmed, Mortuza Saleque, Lin, Zezhou, Li, Molly Meng‐Jung, Li, Mingjie, Xu, Zhihang, Chen, Gao, Bai, Liqi, She, Sixuan, Tsang, Yuen Hong, Huang, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Zu, Di
Ying, Yiran
Wei, Qi
Xiong, Pei
Ahmed, Mortuza Saleque
Lin, Zezhou
Li, Molly Meng‐Jung
Li, Mingjie
Xu, Zhihang
Chen, Gao
Bai, Liqi
She, Sixuan
Tsang, Yuen Hong
Huang, Haitao
description Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts. A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations.
doi_str_mv 10.1002/ange.202405756
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083197382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083197382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-9c76707132f6da3dc06431d3cb7ec999c87a5617092e603ead6dad0085fdeeae3</originalsourceid><addsrcrecordid>eNqFkM1O4zAUha3RIE0H2LK2xDqdazuJ4yVUHVoJAeJvGxnnJnWV2sV2xXTHI7Cd15snIVURs2R1paPvnHN1CDlhMGYA_Jd2HY458BwKWZTfyIgVnGVCFvI7GQHkeVbxXP0gP2NcAkDJpRqRv9d_th06-qiNdsZipPfBdh0GeqvXtqGThQ4dDqJ2ce1D2gnOYR-pTjQtkE5dZx1iwIbOXcLQaoPUt_Tu3-vbnVngCukMB90vN84k6x1tfaDn3sdkXUdvFj55o5Put8kaejME-LAaXsEjctDqPuLxxz0kD7-n95NZdnl9MZ-cXWaGFbLMlJGlBMkEb8tGi8ZAmQvWCPMk0SilTCV1UTIJimMJAnUzYA1AVbQNokZxSE73uevgnzcYU730m-CGylpAJZiSouIDNd5TJvgYA7b1OtiVDtuaQb2bv97NX3_OPxjU3vBie9x-QddnVxfT_953PDKNbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083197382</pqid></control><display><type>article</type><title>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zu, Di ; Ying, Yiran ; Wei, Qi ; Xiong, Pei ; Ahmed, Mortuza Saleque ; Lin, Zezhou ; Li, Molly Meng‐Jung ; Li, Mingjie ; Xu, Zhihang ; Chen, Gao ; Bai, Liqi ; She, Sixuan ; Tsang, Yuen Hong ; Huang, Haitao</creator><creatorcontrib>Zu, Di ; Ying, Yiran ; Wei, Qi ; Xiong, Pei ; Ahmed, Mortuza Saleque ; Lin, Zezhou ; Li, Molly Meng‐Jung ; Li, Mingjie ; Xu, Zhihang ; Chen, Gao ; Bai, Liqi ; She, Sixuan ; Tsang, Yuen Hong ; Huang, Haitao</creatorcontrib><description>Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts. A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202405756</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Charge efficiency ; Charge transfer ; Charge transport ; Electronic structure ; Femtosecond transient absorption spectroscopy ; Heterointerface engineering ; Heterojunctions ; Oxygen ; Oxygen vacancies ; Photocatalysis ; Photocatalysts ; S-scheme heterojunction ; Synergistic effect</subject><ispartof>Angewandte Chemie, 2024-07, Vol.136 (31), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-9c76707132f6da3dc06431d3cb7ec999c87a5617092e603ead6dad0085fdeeae3</cites><orcidid>0000-0002-3861-2702 ; 0009-0003-6019-672X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202405756$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202405756$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zu, Di</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Xiong, Pei</creatorcontrib><creatorcontrib>Ahmed, Mortuza Saleque</creatorcontrib><creatorcontrib>Lin, Zezhou</creatorcontrib><creatorcontrib>Li, Molly Meng‐Jung</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Xu, Zhihang</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Bai, Liqi</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Tsang, Yuen Hong</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><title>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</title><title>Angewandte Chemie</title><description>Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts. A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations.</description><subject>Absorption spectroscopy</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electronic structure</subject><subject>Femtosecond transient absorption spectroscopy</subject><subject>Heterointerface engineering</subject><subject>Heterojunctions</subject><subject>Oxygen</subject><subject>Oxygen vacancies</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>S-scheme heterojunction</subject><subject>Synergistic effect</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1O4zAUha3RIE0H2LK2xDqdazuJ4yVUHVoJAeJvGxnnJnWV2sV2xXTHI7Cd15snIVURs2R1paPvnHN1CDlhMGYA_Jd2HY458BwKWZTfyIgVnGVCFvI7GQHkeVbxXP0gP2NcAkDJpRqRv9d_th06-qiNdsZipPfBdh0GeqvXtqGThQ4dDqJ2ce1D2gnOYR-pTjQtkE5dZx1iwIbOXcLQaoPUt_Tu3-vbnVngCukMB90vN84k6x1tfaDn3sdkXUdvFj55o5Put8kaejME-LAaXsEjctDqPuLxxz0kD7-n95NZdnl9MZ-cXWaGFbLMlJGlBMkEb8tGi8ZAmQvWCPMk0SilTCV1UTIJimMJAnUzYA1AVbQNokZxSE73uevgnzcYU730m-CGylpAJZiSouIDNd5TJvgYA7b1OtiVDtuaQb2bv97NX3_OPxjU3vBie9x-QddnVxfT_953PDKNbg</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Zu, Di</creator><creator>Ying, Yiran</creator><creator>Wei, Qi</creator><creator>Xiong, Pei</creator><creator>Ahmed, Mortuza Saleque</creator><creator>Lin, Zezhou</creator><creator>Li, Molly Meng‐Jung</creator><creator>Li, Mingjie</creator><creator>Xu, Zhihang</creator><creator>Chen, Gao</creator><creator>Bai, Liqi</creator><creator>She, Sixuan</creator><creator>Tsang, Yuen Hong</creator><creator>Huang, Haitao</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3861-2702</orcidid><orcidid>https://orcid.org/0009-0003-6019-672X</orcidid></search><sort><creationdate>20240729</creationdate><title>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</title><author>Zu, Di ; Ying, Yiran ; Wei, Qi ; Xiong, Pei ; Ahmed, Mortuza Saleque ; Lin, Zezhou ; Li, Molly Meng‐Jung ; Li, Mingjie ; Xu, Zhihang ; Chen, Gao ; Bai, Liqi ; She, Sixuan ; Tsang, Yuen Hong ; Huang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-9c76707132f6da3dc06431d3cb7ec999c87a5617092e603ead6dad0085fdeeae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electronic structure</topic><topic>Femtosecond transient absorption spectroscopy</topic><topic>Heterointerface engineering</topic><topic>Heterojunctions</topic><topic>Oxygen</topic><topic>Oxygen vacancies</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>S-scheme heterojunction</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Di</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Xiong, Pei</creatorcontrib><creatorcontrib>Ahmed, Mortuza Saleque</creatorcontrib><creatorcontrib>Lin, Zezhou</creatorcontrib><creatorcontrib>Li, Molly Meng‐Jung</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Xu, Zhihang</creatorcontrib><creatorcontrib>Chen, Gao</creatorcontrib><creatorcontrib>Bai, Liqi</creatorcontrib><creatorcontrib>She, Sixuan</creatorcontrib><creatorcontrib>Tsang, Yuen Hong</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Di</au><au>Ying, Yiran</au><au>Wei, Qi</au><au>Xiong, Pei</au><au>Ahmed, Mortuza Saleque</au><au>Lin, Zezhou</au><au>Li, Molly Meng‐Jung</au><au>Li, Mingjie</au><au>Xu, Zhihang</au><au>Chen, Gao</au><au>Bai, Liqi</au><au>She, Sixuan</au><au>Tsang, Yuen Hong</au><au>Huang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-07-29</date><risdate>2024</risdate><volume>136</volume><issue>31</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in‐depth understanding of Ovs in S‐scheme heterojunction photocatalysts are still limited. Herein, a novel S‐scheme photocatalyst made from WO3‐Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S‐scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs‐TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S‐scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3‐Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S‐scheme photocatalysts. A novel WO3‐Ov/In2S3 S‐scheme photocatalyst with advanced performance is developed. Rapid charge transport ways triggered by Ovs at the heterointerface are unveiled by femtosecond transient absorption spectroscopy (fs‐TAS). The mechanism of Ovs on this S‐scheme photocatalyst is revealed by comprehensive characterizations and theoretical calculations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202405756</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3861-2702</orcidid><orcidid>https://orcid.org/0009-0003-6019-672X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-07, Vol.136 (31), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3083197382
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
Charge efficiency
Charge transfer
Charge transport
Electronic structure
Femtosecond transient absorption spectroscopy
Heterointerface engineering
Heterojunctions
Oxygen
Oxygen vacancies
Photocatalysis
Photocatalysts
S-scheme heterojunction
Synergistic effect
title Oxygen Vacancies Trigger Rapid Charge Transport Channels at the Engineered Interface of S‐Scheme Heterojunction for Boosting Photocatalytic Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Vacancies%20Trigger%20Rapid%20Charge%20Transport%20Channels%20at%20the%20Engineered%20Interface%20of%20S%E2%80%90Scheme%20Heterojunction%20for%20Boosting%20Photocatalytic%20Performance&rft.jtitle=Angewandte%20Chemie&rft.au=Zu,%20Di&rft.date=2024-07-29&rft.volume=136&rft.issue=31&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202405756&rft_dat=%3Cproquest_cross%3E3083197382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083197382&rft_id=info:pmid/&rfr_iscdi=true