Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling
ABSTRACT Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost dis...
Gespeichert in:
Veröffentlicht in: | Permafrost and periglacial processes 2024-07, Vol.35 (3), p.243-261 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 3 |
container_start_page | 243 |
container_title | Permafrost and periglacial processes |
container_volume | 35 |
creator | Popescu, Răzvan Filhol, Simon Etzelmüller, Bernd Vasile, Mirela Pleșoianu, Alin Vîrghileanu, Marina Onaca, Alexandru Șandric, Ionuț Săvulescu, Ionuț Cruceru, Nicolae Vespremeanu‐Stroe, Alfred Westermann, Sebastian Sîrbu, Flavius Mihai, Bogdan Nedelea, Alexandru Gascoin, Simon |
description | ABSTRACT
Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable. |
doi_str_mv | 10.1002/ppp.2232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083183555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083183555</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2412-a2aeedb3c98520b6fd411fd587ec05729db96557e4cee7496c4f21a2884774a03</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EEqUg8QmW2LBoiu3YeSxRoYDUiojH2nKSG-qqsYOdgPr3OJQtmzuzOJqrGYQuKZlTQthN13VzxmJ2hCaU5HlERUyOR89FlKScnKIz77eEkCymfILqAlyrGmd9j--0750uh15bg7XB_Qbwqx2COIMXynWq32hl_Ay_2FYZrWb4Dpz-ghovnW3xWlUbbQCvQDmjzQde2xp2wZyjk0btPFz86RS9L-_fFo_R6vnhaXG7ihTjlIWrAOoyrvJMMFImTc0pbWqRpVARkbK8LvNEiBR4BZDyPKl4w6hiWcbTlCsST9HVIbdz9nMA38utHZwJL2U89s1iIUSgrg9UFVp7B43snG6V20tK5LihDBvKccOARgf0W-9g_y8ni6L45X8AtRhypQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083183555</pqid></control><display><type>article</type><title>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</title><source>Access via Wiley Online Library</source><creator>Popescu, Răzvan ; Filhol, Simon ; Etzelmüller, Bernd ; Vasile, Mirela ; Pleșoianu, Alin ; Vîrghileanu, Marina ; Onaca, Alexandru ; Șandric, Ionuț ; Săvulescu, Ionuț ; Cruceru, Nicolae ; Vespremeanu‐Stroe, Alfred ; Westermann, Sebastian ; Sîrbu, Flavius ; Mihai, Bogdan ; Nedelea, Alexandru ; Gascoin, Simon</creator><creatorcontrib>Popescu, Răzvan ; Filhol, Simon ; Etzelmüller, Bernd ; Vasile, Mirela ; Pleșoianu, Alin ; Vîrghileanu, Marina ; Onaca, Alexandru ; Șandric, Ionuț ; Săvulescu, Ionuț ; Cruceru, Nicolae ; Vespremeanu‐Stroe, Alfred ; Westermann, Sebastian ; Sîrbu, Flavius ; Mihai, Bogdan ; Nedelea, Alexandru ; Gascoin, Simon</creatorcontrib><description>ABSTRACT
Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.</description><identifier>ISSN: 1045-6740</identifier><identifier>EISSN: 1099-1530</identifier><identifier>DOI: 10.1002/ppp.2232</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Bottom temperature ; BTS ; isolated patchy mountain permafrost ; Learning algorithms ; Machine learning ; Massifs ; Modelling ; Mountains ; Neural networks ; Permafrost ; Permafrost distribution ; Regression models ; Sensitivity analysis ; Snow cover ; Southern Carpathians ; statistical modeling ; Support vector machines ; Winter snow</subject><ispartof>Permafrost and periglacial processes, 2024-07, Vol.35 (3), p.243-261</ispartof><rights>2024 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2412-a2aeedb3c98520b6fd411fd587ec05729db96557e4cee7496c4f21a2884774a03</cites><orcidid>0000-0002-6534-7852 ; 0000-0001-6559-3490 ; 0000-0001-5156-3653 ; 0000-0001-5990-6403 ; 0000-0003-0514-4321 ; 0000-0002-6373-818X ; 0000-0002-2559-4621 ; 0000-0002-4996-6768 ; 0000-0002-2763-6530 ; 0000-0003-1282-7307 ; 0000-0002-9292-9479 ; 0000-0002-5834-8697 ; 0000-0002-4518-1779 ; 0000-0002-6339-927X ; 0000-0001-6054-7954 ; 0000-0003-4665-9620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppp.2232$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppp.2232$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Popescu, Răzvan</creatorcontrib><creatorcontrib>Filhol, Simon</creatorcontrib><creatorcontrib>Etzelmüller, Bernd</creatorcontrib><creatorcontrib>Vasile, Mirela</creatorcontrib><creatorcontrib>Pleșoianu, Alin</creatorcontrib><creatorcontrib>Vîrghileanu, Marina</creatorcontrib><creatorcontrib>Onaca, Alexandru</creatorcontrib><creatorcontrib>Șandric, Ionuț</creatorcontrib><creatorcontrib>Săvulescu, Ionuț</creatorcontrib><creatorcontrib>Cruceru, Nicolae</creatorcontrib><creatorcontrib>Vespremeanu‐Stroe, Alfred</creatorcontrib><creatorcontrib>Westermann, Sebastian</creatorcontrib><creatorcontrib>Sîrbu, Flavius</creatorcontrib><creatorcontrib>Mihai, Bogdan</creatorcontrib><creatorcontrib>Nedelea, Alexandru</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><title>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</title><title>Permafrost and periglacial processes</title><description>ABSTRACT
Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.</description><subject>Bottom temperature</subject><subject>BTS</subject><subject>isolated patchy mountain permafrost</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Massifs</subject><subject>Modelling</subject><subject>Mountains</subject><subject>Neural networks</subject><subject>Permafrost</subject><subject>Permafrost distribution</subject><subject>Regression models</subject><subject>Sensitivity analysis</subject><subject>Snow cover</subject><subject>Southern Carpathians</subject><subject>statistical modeling</subject><subject>Support vector machines</subject><subject>Winter snow</subject><issn>1045-6740</issn><issn>1099-1530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMtOwzAURC0EEqUg8QmW2LBoiu3YeSxRoYDUiojH2nKSG-qqsYOdgPr3OJQtmzuzOJqrGYQuKZlTQthN13VzxmJ2hCaU5HlERUyOR89FlKScnKIz77eEkCymfILqAlyrGmd9j--0750uh15bg7XB_Qbwqx2COIMXynWq32hl_Ay_2FYZrWb4Dpz-ghovnW3xWlUbbQCvQDmjzQde2xp2wZyjk0btPFz86RS9L-_fFo_R6vnhaXG7ihTjlIWrAOoyrvJMMFImTc0pbWqRpVARkbK8LvNEiBR4BZDyPKl4w6hiWcbTlCsST9HVIbdz9nMA38utHZwJL2U89s1iIUSgrg9UFVp7B43snG6V20tK5LihDBvKccOARgf0W-9g_y8ni6L45X8AtRhypQ</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Popescu, Răzvan</creator><creator>Filhol, Simon</creator><creator>Etzelmüller, Bernd</creator><creator>Vasile, Mirela</creator><creator>Pleșoianu, Alin</creator><creator>Vîrghileanu, Marina</creator><creator>Onaca, Alexandru</creator><creator>Șandric, Ionuț</creator><creator>Săvulescu, Ionuț</creator><creator>Cruceru, Nicolae</creator><creator>Vespremeanu‐Stroe, Alfred</creator><creator>Westermann, Sebastian</creator><creator>Sîrbu, Flavius</creator><creator>Mihai, Bogdan</creator><creator>Nedelea, Alexandru</creator><creator>Gascoin, Simon</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6534-7852</orcidid><orcidid>https://orcid.org/0000-0001-6559-3490</orcidid><orcidid>https://orcid.org/0000-0001-5156-3653</orcidid><orcidid>https://orcid.org/0000-0001-5990-6403</orcidid><orcidid>https://orcid.org/0000-0003-0514-4321</orcidid><orcidid>https://orcid.org/0000-0002-6373-818X</orcidid><orcidid>https://orcid.org/0000-0002-2559-4621</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-2763-6530</orcidid><orcidid>https://orcid.org/0000-0003-1282-7307</orcidid><orcidid>https://orcid.org/0000-0002-9292-9479</orcidid><orcidid>https://orcid.org/0000-0002-5834-8697</orcidid><orcidid>https://orcid.org/0000-0002-4518-1779</orcidid><orcidid>https://orcid.org/0000-0002-6339-927X</orcidid><orcidid>https://orcid.org/0000-0001-6054-7954</orcidid><orcidid>https://orcid.org/0000-0003-4665-9620</orcidid></search><sort><creationdate>202407</creationdate><title>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</title><author>Popescu, Răzvan ; Filhol, Simon ; Etzelmüller, Bernd ; Vasile, Mirela ; Pleșoianu, Alin ; Vîrghileanu, Marina ; Onaca, Alexandru ; Șandric, Ionuț ; Săvulescu, Ionuț ; Cruceru, Nicolae ; Vespremeanu‐Stroe, Alfred ; Westermann, Sebastian ; Sîrbu, Flavius ; Mihai, Bogdan ; Nedelea, Alexandru ; Gascoin, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2412-a2aeedb3c98520b6fd411fd587ec05729db96557e4cee7496c4f21a2884774a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bottom temperature</topic><topic>BTS</topic><topic>isolated patchy mountain permafrost</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Massifs</topic><topic>Modelling</topic><topic>Mountains</topic><topic>Neural networks</topic><topic>Permafrost</topic><topic>Permafrost distribution</topic><topic>Regression models</topic><topic>Sensitivity analysis</topic><topic>Snow cover</topic><topic>Southern Carpathians</topic><topic>statistical modeling</topic><topic>Support vector machines</topic><topic>Winter snow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popescu, Răzvan</creatorcontrib><creatorcontrib>Filhol, Simon</creatorcontrib><creatorcontrib>Etzelmüller, Bernd</creatorcontrib><creatorcontrib>Vasile, Mirela</creatorcontrib><creatorcontrib>Pleșoianu, Alin</creatorcontrib><creatorcontrib>Vîrghileanu, Marina</creatorcontrib><creatorcontrib>Onaca, Alexandru</creatorcontrib><creatorcontrib>Șandric, Ionuț</creatorcontrib><creatorcontrib>Săvulescu, Ionuț</creatorcontrib><creatorcontrib>Cruceru, Nicolae</creatorcontrib><creatorcontrib>Vespremeanu‐Stroe, Alfred</creatorcontrib><creatorcontrib>Westermann, Sebastian</creatorcontrib><creatorcontrib>Sîrbu, Flavius</creatorcontrib><creatorcontrib>Mihai, Bogdan</creatorcontrib><creatorcontrib>Nedelea, Alexandru</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Permafrost and periglacial processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popescu, Răzvan</au><au>Filhol, Simon</au><au>Etzelmüller, Bernd</au><au>Vasile, Mirela</au><au>Pleșoianu, Alin</au><au>Vîrghileanu, Marina</au><au>Onaca, Alexandru</au><au>Șandric, Ionuț</au><au>Săvulescu, Ionuț</au><au>Cruceru, Nicolae</au><au>Vespremeanu‐Stroe, Alfred</au><au>Westermann, Sebastian</au><au>Sîrbu, Flavius</au><au>Mihai, Bogdan</au><au>Nedelea, Alexandru</au><au>Gascoin, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</atitle><jtitle>Permafrost and periglacial processes</jtitle><date>2024-07</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>243</spage><epage>261</epage><pages>243-261</pages><issn>1045-6740</issn><eissn>1099-1530</eissn><abstract>ABSTRACT
Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppp.2232</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6534-7852</orcidid><orcidid>https://orcid.org/0000-0001-6559-3490</orcidid><orcidid>https://orcid.org/0000-0001-5156-3653</orcidid><orcidid>https://orcid.org/0000-0001-5990-6403</orcidid><orcidid>https://orcid.org/0000-0003-0514-4321</orcidid><orcidid>https://orcid.org/0000-0002-6373-818X</orcidid><orcidid>https://orcid.org/0000-0002-2559-4621</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-2763-6530</orcidid><orcidid>https://orcid.org/0000-0003-1282-7307</orcidid><orcidid>https://orcid.org/0000-0002-9292-9479</orcidid><orcidid>https://orcid.org/0000-0002-5834-8697</orcidid><orcidid>https://orcid.org/0000-0002-4518-1779</orcidid><orcidid>https://orcid.org/0000-0002-6339-927X</orcidid><orcidid>https://orcid.org/0000-0001-6054-7954</orcidid><orcidid>https://orcid.org/0000-0003-4665-9620</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-6740 |
ispartof | Permafrost and periglacial processes, 2024-07, Vol.35 (3), p.243-261 |
issn | 1045-6740 1099-1530 |
language | eng |
recordid | cdi_proquest_journals_3083183555 |
source | Access via Wiley Online Library |
subjects | Bottom temperature BTS isolated patchy mountain permafrost Learning algorithms Machine learning Massifs Modelling Mountains Neural networks Permafrost Permafrost distribution Regression models Sensitivity analysis Snow cover Southern Carpathians statistical modeling Support vector machines Winter snow |
title | Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permafrost%20Distribution%20in%20the%20Southern%20Carpathians,%20Romania,%20Derived%20From%20Machine%20Learning%20Modeling&rft.jtitle=Permafrost%20and%20periglacial%20processes&rft.au=Popescu,%20R%C4%83zvan&rft.date=2024-07&rft.volume=35&rft.issue=3&rft.spage=243&rft.epage=261&rft.pages=243-261&rft.issn=1045-6740&rft.eissn=1099-1530&rft_id=info:doi/10.1002/ppp.2232&rft_dat=%3Cproquest_cross%3E3083183555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083183555&rft_id=info:pmid/&rfr_iscdi=true |