Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling

ABSTRACT Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Permafrost and periglacial processes 2024-07, Vol.35 (3), p.243-261
Hauptverfasser: Popescu, Răzvan, Filhol, Simon, Etzelmüller, Bernd, Vasile, Mirela, Pleșoianu, Alin, Vîrghileanu, Marina, Onaca, Alexandru, Șandric, Ionuț, Săvulescu, Ionuț, Cruceru, Nicolae, Vespremeanu‐Stroe, Alfred, Westermann, Sebastian, Sîrbu, Flavius, Mihai, Bogdan, Nedelea, Alexandru, Gascoin, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 3
container_start_page 243
container_title Permafrost and periglacial processes
container_volume 35
creator Popescu, Răzvan
Filhol, Simon
Etzelmüller, Bernd
Vasile, Mirela
Pleșoianu, Alin
Vîrghileanu, Marina
Onaca, Alexandru
Șandric, Ionuț
Săvulescu, Ionuț
Cruceru, Nicolae
Vespremeanu‐Stroe, Alfred
Westermann, Sebastian
Sîrbu, Flavius
Mihai, Bogdan
Nedelea, Alexandru
Gascoin, Simon
description ABSTRACT Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.
doi_str_mv 10.1002/ppp.2232
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083183555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083183555</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2412-a2aeedb3c98520b6fd411fd587ec05729db96557e4cee7496c4f21a2884774a03</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EEqUg8QmW2LBoiu3YeSxRoYDUiojH2nKSG-qqsYOdgPr3OJQtmzuzOJqrGYQuKZlTQthN13VzxmJ2hCaU5HlERUyOR89FlKScnKIz77eEkCymfILqAlyrGmd9j--0750uh15bg7XB_Qbwqx2COIMXynWq32hl_Ay_2FYZrWb4Dpz-ghovnW3xWlUbbQCvQDmjzQde2xp2wZyjk0btPFz86RS9L-_fFo_R6vnhaXG7ihTjlIWrAOoyrvJMMFImTc0pbWqRpVARkbK8LvNEiBR4BZDyPKl4w6hiWcbTlCsST9HVIbdz9nMA38utHZwJL2U89s1iIUSgrg9UFVp7B43snG6V20tK5LihDBvKccOARgf0W-9g_y8ni6L45X8AtRhypQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083183555</pqid></control><display><type>article</type><title>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</title><source>Access via Wiley Online Library</source><creator>Popescu, Răzvan ; Filhol, Simon ; Etzelmüller, Bernd ; Vasile, Mirela ; Pleșoianu, Alin ; Vîrghileanu, Marina ; Onaca, Alexandru ; Șandric, Ionuț ; Săvulescu, Ionuț ; Cruceru, Nicolae ; Vespremeanu‐Stroe, Alfred ; Westermann, Sebastian ; Sîrbu, Flavius ; Mihai, Bogdan ; Nedelea, Alexandru ; Gascoin, Simon</creator><creatorcontrib>Popescu, Răzvan ; Filhol, Simon ; Etzelmüller, Bernd ; Vasile, Mirela ; Pleșoianu, Alin ; Vîrghileanu, Marina ; Onaca, Alexandru ; Șandric, Ionuț ; Săvulescu, Ionuț ; Cruceru, Nicolae ; Vespremeanu‐Stroe, Alfred ; Westermann, Sebastian ; Sîrbu, Flavius ; Mihai, Bogdan ; Nedelea, Alexandru ; Gascoin, Simon</creatorcontrib><description>ABSTRACT Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.</description><identifier>ISSN: 1045-6740</identifier><identifier>EISSN: 1099-1530</identifier><identifier>DOI: 10.1002/ppp.2232</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Bottom temperature ; BTS ; isolated patchy mountain permafrost ; Learning algorithms ; Machine learning ; Massifs ; Modelling ; Mountains ; Neural networks ; Permafrost ; Permafrost distribution ; Regression models ; Sensitivity analysis ; Snow cover ; Southern Carpathians ; statistical modeling ; Support vector machines ; Winter snow</subject><ispartof>Permafrost and periglacial processes, 2024-07, Vol.35 (3), p.243-261</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2412-a2aeedb3c98520b6fd411fd587ec05729db96557e4cee7496c4f21a2884774a03</cites><orcidid>0000-0002-6534-7852 ; 0000-0001-6559-3490 ; 0000-0001-5156-3653 ; 0000-0001-5990-6403 ; 0000-0003-0514-4321 ; 0000-0002-6373-818X ; 0000-0002-2559-4621 ; 0000-0002-4996-6768 ; 0000-0002-2763-6530 ; 0000-0003-1282-7307 ; 0000-0002-9292-9479 ; 0000-0002-5834-8697 ; 0000-0002-4518-1779 ; 0000-0002-6339-927X ; 0000-0001-6054-7954 ; 0000-0003-4665-9620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppp.2232$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppp.2232$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Popescu, Răzvan</creatorcontrib><creatorcontrib>Filhol, Simon</creatorcontrib><creatorcontrib>Etzelmüller, Bernd</creatorcontrib><creatorcontrib>Vasile, Mirela</creatorcontrib><creatorcontrib>Pleșoianu, Alin</creatorcontrib><creatorcontrib>Vîrghileanu, Marina</creatorcontrib><creatorcontrib>Onaca, Alexandru</creatorcontrib><creatorcontrib>Șandric, Ionuț</creatorcontrib><creatorcontrib>Săvulescu, Ionuț</creatorcontrib><creatorcontrib>Cruceru, Nicolae</creatorcontrib><creatorcontrib>Vespremeanu‐Stroe, Alfred</creatorcontrib><creatorcontrib>Westermann, Sebastian</creatorcontrib><creatorcontrib>Sîrbu, Flavius</creatorcontrib><creatorcontrib>Mihai, Bogdan</creatorcontrib><creatorcontrib>Nedelea, Alexandru</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><title>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</title><title>Permafrost and periglacial processes</title><description>ABSTRACT Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.</description><subject>Bottom temperature</subject><subject>BTS</subject><subject>isolated patchy mountain permafrost</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Massifs</subject><subject>Modelling</subject><subject>Mountains</subject><subject>Neural networks</subject><subject>Permafrost</subject><subject>Permafrost distribution</subject><subject>Regression models</subject><subject>Sensitivity analysis</subject><subject>Snow cover</subject><subject>Southern Carpathians</subject><subject>statistical modeling</subject><subject>Support vector machines</subject><subject>Winter snow</subject><issn>1045-6740</issn><issn>1099-1530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMtOwzAURC0EEqUg8QmW2LBoiu3YeSxRoYDUiojH2nKSG-qqsYOdgPr3OJQtmzuzOJqrGYQuKZlTQthN13VzxmJ2hCaU5HlERUyOR89FlKScnKIz77eEkCymfILqAlyrGmd9j--0750uh15bg7XB_Qbwqx2COIMXynWq32hl_Ay_2FYZrWb4Dpz-ghovnW3xWlUbbQCvQDmjzQde2xp2wZyjk0btPFz86RS9L-_fFo_R6vnhaXG7ihTjlIWrAOoyrvJMMFImTc0pbWqRpVARkbK8LvNEiBR4BZDyPKl4w6hiWcbTlCsST9HVIbdz9nMA38utHZwJL2U89s1iIUSgrg9UFVp7B43snG6V20tK5LihDBvKccOARgf0W-9g_y8ni6L45X8AtRhypQ</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Popescu, Răzvan</creator><creator>Filhol, Simon</creator><creator>Etzelmüller, Bernd</creator><creator>Vasile, Mirela</creator><creator>Pleșoianu, Alin</creator><creator>Vîrghileanu, Marina</creator><creator>Onaca, Alexandru</creator><creator>Șandric, Ionuț</creator><creator>Săvulescu, Ionuț</creator><creator>Cruceru, Nicolae</creator><creator>Vespremeanu‐Stroe, Alfred</creator><creator>Westermann, Sebastian</creator><creator>Sîrbu, Flavius</creator><creator>Mihai, Bogdan</creator><creator>Nedelea, Alexandru</creator><creator>Gascoin, Simon</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6534-7852</orcidid><orcidid>https://orcid.org/0000-0001-6559-3490</orcidid><orcidid>https://orcid.org/0000-0001-5156-3653</orcidid><orcidid>https://orcid.org/0000-0001-5990-6403</orcidid><orcidid>https://orcid.org/0000-0003-0514-4321</orcidid><orcidid>https://orcid.org/0000-0002-6373-818X</orcidid><orcidid>https://orcid.org/0000-0002-2559-4621</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-2763-6530</orcidid><orcidid>https://orcid.org/0000-0003-1282-7307</orcidid><orcidid>https://orcid.org/0000-0002-9292-9479</orcidid><orcidid>https://orcid.org/0000-0002-5834-8697</orcidid><orcidid>https://orcid.org/0000-0002-4518-1779</orcidid><orcidid>https://orcid.org/0000-0002-6339-927X</orcidid><orcidid>https://orcid.org/0000-0001-6054-7954</orcidid><orcidid>https://orcid.org/0000-0003-4665-9620</orcidid></search><sort><creationdate>202407</creationdate><title>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</title><author>Popescu, Răzvan ; Filhol, Simon ; Etzelmüller, Bernd ; Vasile, Mirela ; Pleșoianu, Alin ; Vîrghileanu, Marina ; Onaca, Alexandru ; Șandric, Ionuț ; Săvulescu, Ionuț ; Cruceru, Nicolae ; Vespremeanu‐Stroe, Alfred ; Westermann, Sebastian ; Sîrbu, Flavius ; Mihai, Bogdan ; Nedelea, Alexandru ; Gascoin, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2412-a2aeedb3c98520b6fd411fd587ec05729db96557e4cee7496c4f21a2884774a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bottom temperature</topic><topic>BTS</topic><topic>isolated patchy mountain permafrost</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Massifs</topic><topic>Modelling</topic><topic>Mountains</topic><topic>Neural networks</topic><topic>Permafrost</topic><topic>Permafrost distribution</topic><topic>Regression models</topic><topic>Sensitivity analysis</topic><topic>Snow cover</topic><topic>Southern Carpathians</topic><topic>statistical modeling</topic><topic>Support vector machines</topic><topic>Winter snow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popescu, Răzvan</creatorcontrib><creatorcontrib>Filhol, Simon</creatorcontrib><creatorcontrib>Etzelmüller, Bernd</creatorcontrib><creatorcontrib>Vasile, Mirela</creatorcontrib><creatorcontrib>Pleșoianu, Alin</creatorcontrib><creatorcontrib>Vîrghileanu, Marina</creatorcontrib><creatorcontrib>Onaca, Alexandru</creatorcontrib><creatorcontrib>Șandric, Ionuț</creatorcontrib><creatorcontrib>Săvulescu, Ionuț</creatorcontrib><creatorcontrib>Cruceru, Nicolae</creatorcontrib><creatorcontrib>Vespremeanu‐Stroe, Alfred</creatorcontrib><creatorcontrib>Westermann, Sebastian</creatorcontrib><creatorcontrib>Sîrbu, Flavius</creatorcontrib><creatorcontrib>Mihai, Bogdan</creatorcontrib><creatorcontrib>Nedelea, Alexandru</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Permafrost and periglacial processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popescu, Răzvan</au><au>Filhol, Simon</au><au>Etzelmüller, Bernd</au><au>Vasile, Mirela</au><au>Pleșoianu, Alin</au><au>Vîrghileanu, Marina</au><au>Onaca, Alexandru</au><au>Șandric, Ionuț</au><au>Săvulescu, Ionuț</au><au>Cruceru, Nicolae</au><au>Vespremeanu‐Stroe, Alfred</au><au>Westermann, Sebastian</au><au>Sîrbu, Flavius</au><au>Mihai, Bogdan</au><au>Nedelea, Alexandru</au><au>Gascoin, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling</atitle><jtitle>Permafrost and periglacial processes</jtitle><date>2024-07</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>243</spage><epage>261</epage><pages>243-261</pages><issn>1045-6740</issn><eissn>1099-1530</eissn><abstract>ABSTRACT Computer modeling of sporadic and isolated patches of mountain permafrost distribution is difficult to implement without overestimating it. The main challenge is to determine the very areas where the criteria for permafrost maintenance are met. This paper aims to modeling the permafrost distribution in the Southern Carpathians (SC), a typical marginal periglacial mountain range. For this purpose, a collection of 883 bottom temperature of late winter snow cover (BTS) points was used as a proxy for permafrost presence or absence in order to train several machine learning models. The performances of each model were evaluated with AUC with varying between 0.99 for Maxent and 0.74 for K‐nearest neighbors and most models (five) exhibiting values between 0.82 and 0.86. Other tests such as confusion matrices, sensitivity analyses, data shuffling, and data size reduction tests indicated that Maxent, AdaBoost, and support vector machine offered the best results while logistic regression, neural network, and gradient boosting exhibited rather poor permafrost distributions. The final ensemble median model indicated a total permafrost area of 19.2 km2 occupying 1%–9% of the alpine area of the studied massifs. NDVI proved crucial for permafrost prediction because it allows delimiting the debris surfaces where permafrost is probable.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppp.2232</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6534-7852</orcidid><orcidid>https://orcid.org/0000-0001-6559-3490</orcidid><orcidid>https://orcid.org/0000-0001-5156-3653</orcidid><orcidid>https://orcid.org/0000-0001-5990-6403</orcidid><orcidid>https://orcid.org/0000-0003-0514-4321</orcidid><orcidid>https://orcid.org/0000-0002-6373-818X</orcidid><orcidid>https://orcid.org/0000-0002-2559-4621</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-2763-6530</orcidid><orcidid>https://orcid.org/0000-0003-1282-7307</orcidid><orcidid>https://orcid.org/0000-0002-9292-9479</orcidid><orcidid>https://orcid.org/0000-0002-5834-8697</orcidid><orcidid>https://orcid.org/0000-0002-4518-1779</orcidid><orcidid>https://orcid.org/0000-0002-6339-927X</orcidid><orcidid>https://orcid.org/0000-0001-6054-7954</orcidid><orcidid>https://orcid.org/0000-0003-4665-9620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-6740
ispartof Permafrost and periglacial processes, 2024-07, Vol.35 (3), p.243-261
issn 1045-6740
1099-1530
language eng
recordid cdi_proquest_journals_3083183555
source Access via Wiley Online Library
subjects Bottom temperature
BTS
isolated patchy mountain permafrost
Learning algorithms
Machine learning
Massifs
Modelling
Mountains
Neural networks
Permafrost
Permafrost distribution
Regression models
Sensitivity analysis
Snow cover
Southern Carpathians
statistical modeling
Support vector machines
Winter snow
title Permafrost Distribution in the Southern Carpathians, Romania, Derived From Machine Learning Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permafrost%20Distribution%20in%20the%20Southern%20Carpathians,%20Romania,%20Derived%20From%20Machine%20Learning%20Modeling&rft.jtitle=Permafrost%20and%20periglacial%20processes&rft.au=Popescu,%20R%C4%83zvan&rft.date=2024-07&rft.volume=35&rft.issue=3&rft.spage=243&rft.epage=261&rft.pages=243-261&rft.issn=1045-6740&rft.eissn=1099-1530&rft_id=info:doi/10.1002/ppp.2232&rft_dat=%3Cproquest_cross%3E3083183555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083183555&rft_id=info:pmid/&rfr_iscdi=true