Nano‐Calcium Carbonate with Core–Shell Structure was Prepared by Dopamine Chelation Using Pluronic F‐127 as Template
Herein, a new template carbonization method is used to prepare calcite‐type nano‐calcium carbonate (CaCO 3 ) with a core–shell structure using calcium hydroxide as a solute and Pluronic F‐127 as a templating and pore‐forming agent. Dopamine hydrochloride is added to control the size of calcium hydro...
Gespeichert in:
Veröffentlicht in: | Particle & particle systems characterization 2024-07, Vol.41 (7) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Particle & particle systems characterization |
container_volume | 41 |
creator | Shu, Weihan Gong, Jiang Zhang, Hanqing Zheng, Fengling Zeng, Juan Wang, Xue Qin, Siqian Zhang, Chuancai Xue, Haodong Dai, Bin |
description | Herein, a new template carbonization method is used to prepare calcite‐type nano‐calcium carbonate (CaCO
3
) with a core–shell structure using calcium hydroxide as a solute and Pluronic F‐127 as a templating and pore‐forming agent. Dopamine hydrochloride is added to control the size of calcium hydroxide particles. The morphology, particle size, and crystal type of CaCO
3
are characterized via transmission electron microscopy, X‐ray diffraction, nanoparticle size, and zeta potentiometer. The creation of core–shell calcium carbonate nanoparticles is examined in relation to reaction circumstances (i.e., additive sequence, additive amount, and additive mixing time), carbonization temperature, liquid flow rate, and templates with varying chain lengths. Furthermore, a discussion is held regarding the formation mechanism of spherical core–shell calcium carbonate that is created using the innovative template carbonization method. The results show that the order, amount, liquid flow rate, and template type of additives have a significant effect on the crystal shape of calcium carbonate nanoparticles. The mixing time of additives has a significant effect on the particle size of calcium carbonate nanoparticles. Interestingly, the thickness of the shell depends on the carbonization temperature, and too slow or too fast flow rate will lead to the formation of cyclic calcium carbonate nanoparticles. |
doi_str_mv | 10.1002/ppsc.202300199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083048608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083048608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-b7a67098ac6a4a51a63335f8b5fe729b8da1babcb85c8621f12c43420053787f3</originalsourceid><addsrcrecordid>eNo9kMFKw0AURQdRsFa3rgdcp76ZSSaTpUSrQtFC23V4mU5sSpKJMwlSV_0EwT_sl5iiuLqLd-67cAi5ZjBhAPy2bb2ecOACgCXJCRmxiLMgZCw-JSNIRBiAkvKcXHi_BQAZMTkiny_Y2MP-K8VKl31NU3S5bbAz9KPsNjS1zhz234uNqSq66Fyvu94NN_R07kyLzqxpvqP3tsW6bAxNBxC70jZ05cvmjc6r3tmm1HQ6bDAe06G4NHU7QOaSnBVYeXP1l2Oymj4s06dg9vr4nN7NAs0574I8RhlDolBLDDFiKIUQUaHyqDAxT3K1RpZjrnMVaSU5KxjXoQg5QCRiFRdiTG5-_7bOvvfGd9nW9q4ZJjMBSkCo5BBjMvmltLPeO1NkrStrdLuMQXb0mx39Zv9-xQ-WeXEm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083048608</pqid></control><display><type>article</type><title>Nano‐Calcium Carbonate with Core–Shell Structure was Prepared by Dopamine Chelation Using Pluronic F‐127 as Template</title><source>Wiley Blackwell Single Titles</source><creator>Shu, Weihan ; Gong, Jiang ; Zhang, Hanqing ; Zheng, Fengling ; Zeng, Juan ; Wang, Xue ; Qin, Siqian ; Zhang, Chuancai ; Xue, Haodong ; Dai, Bin</creator><creatorcontrib>Shu, Weihan ; Gong, Jiang ; Zhang, Hanqing ; Zheng, Fengling ; Zeng, Juan ; Wang, Xue ; Qin, Siqian ; Zhang, Chuancai ; Xue, Haodong ; Dai, Bin</creatorcontrib><description>Herein, a new template carbonization method is used to prepare calcite‐type nano‐calcium carbonate (CaCO
3
) with a core–shell structure using calcium hydroxide as a solute and Pluronic F‐127 as a templating and pore‐forming agent. Dopamine hydrochloride is added to control the size of calcium hydroxide particles. The morphology, particle size, and crystal type of CaCO
3
are characterized via transmission electron microscopy, X‐ray diffraction, nanoparticle size, and zeta potentiometer. The creation of core–shell calcium carbonate nanoparticles is examined in relation to reaction circumstances (i.e., additive sequence, additive amount, and additive mixing time), carbonization temperature, liquid flow rate, and templates with varying chain lengths. Furthermore, a discussion is held regarding the formation mechanism of spherical core–shell calcium carbonate that is created using the innovative template carbonization method. The results show that the order, amount, liquid flow rate, and template type of additives have a significant effect on the crystal shape of calcium carbonate nanoparticles. The mixing time of additives has a significant effect on the particle size of calcium carbonate nanoparticles. Interestingly, the thickness of the shell depends on the carbonization temperature, and too slow or too fast flow rate will lead to the formation of cyclic calcium carbonate nanoparticles.</description><identifier>ISSN: 0934-0866</identifier><identifier>EISSN: 1521-4117</identifier><identifier>DOI: 10.1002/ppsc.202300199</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Additives ; Calcite ; Calcium carbonate ; Carbonization ; Chelation ; Core-shell structure ; Dopamine ; Flow velocity ; Liquid flow ; Nanoparticles ; Particle size ; Potentiometers ; Shape effects ; Slaked lime ; Spherical shells ; Thickness</subject><ispartof>Particle & particle systems characterization, 2024-07, Vol.41 (7)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-b7a67098ac6a4a51a63335f8b5fe729b8da1babcb85c8621f12c43420053787f3</cites><orcidid>0000-0001-8743-0991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Shu, Weihan</creatorcontrib><creatorcontrib>Gong, Jiang</creatorcontrib><creatorcontrib>Zhang, Hanqing</creatorcontrib><creatorcontrib>Zheng, Fengling</creatorcontrib><creatorcontrib>Zeng, Juan</creatorcontrib><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Qin, Siqian</creatorcontrib><creatorcontrib>Zhang, Chuancai</creatorcontrib><creatorcontrib>Xue, Haodong</creatorcontrib><creatorcontrib>Dai, Bin</creatorcontrib><title>Nano‐Calcium Carbonate with Core–Shell Structure was Prepared by Dopamine Chelation Using Pluronic F‐127 as Template</title><title>Particle & particle systems characterization</title><description>Herein, a new template carbonization method is used to prepare calcite‐type nano‐calcium carbonate (CaCO
3
) with a core–shell structure using calcium hydroxide as a solute and Pluronic F‐127 as a templating and pore‐forming agent. Dopamine hydrochloride is added to control the size of calcium hydroxide particles. The morphology, particle size, and crystal type of CaCO
3
are characterized via transmission electron microscopy, X‐ray diffraction, nanoparticle size, and zeta potentiometer. The creation of core–shell calcium carbonate nanoparticles is examined in relation to reaction circumstances (i.e., additive sequence, additive amount, and additive mixing time), carbonization temperature, liquid flow rate, and templates with varying chain lengths. Furthermore, a discussion is held regarding the formation mechanism of spherical core–shell calcium carbonate that is created using the innovative template carbonization method. The results show that the order, amount, liquid flow rate, and template type of additives have a significant effect on the crystal shape of calcium carbonate nanoparticles. The mixing time of additives has a significant effect on the particle size of calcium carbonate nanoparticles. Interestingly, the thickness of the shell depends on the carbonization temperature, and too slow or too fast flow rate will lead to the formation of cyclic calcium carbonate nanoparticles.</description><subject>Additives</subject><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Carbonization</subject><subject>Chelation</subject><subject>Core-shell structure</subject><subject>Dopamine</subject><subject>Flow velocity</subject><subject>Liquid flow</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Potentiometers</subject><subject>Shape effects</subject><subject>Slaked lime</subject><subject>Spherical shells</subject><subject>Thickness</subject><issn>0934-0866</issn><issn>1521-4117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKw0AURQdRsFa3rgdcp76ZSSaTpUSrQtFC23V4mU5sSpKJMwlSV_0EwT_sl5iiuLqLd-67cAi5ZjBhAPy2bb2ecOACgCXJCRmxiLMgZCw-JSNIRBiAkvKcXHi_BQAZMTkiny_Y2MP-K8VKl31NU3S5bbAz9KPsNjS1zhz234uNqSq66Fyvu94NN_R07kyLzqxpvqP3tsW6bAxNBxC70jZ05cvmjc6r3tmm1HQ6bDAe06G4NHU7QOaSnBVYeXP1l2Oymj4s06dg9vr4nN7NAs0574I8RhlDolBLDDFiKIUQUaHyqDAxT3K1RpZjrnMVaSU5KxjXoQg5QCRiFRdiTG5-_7bOvvfGd9nW9q4ZJjMBSkCo5BBjMvmltLPeO1NkrStrdLuMQXb0mx39Zv9-xQ-WeXEm</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Shu, Weihan</creator><creator>Gong, Jiang</creator><creator>Zhang, Hanqing</creator><creator>Zheng, Fengling</creator><creator>Zeng, Juan</creator><creator>Wang, Xue</creator><creator>Qin, Siqian</creator><creator>Zhang, Chuancai</creator><creator>Xue, Haodong</creator><creator>Dai, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8743-0991</orcidid></search><sort><creationdate>20240701</creationdate><title>Nano‐Calcium Carbonate with Core–Shell Structure was Prepared by Dopamine Chelation Using Pluronic F‐127 as Template</title><author>Shu, Weihan ; Gong, Jiang ; Zhang, Hanqing ; Zheng, Fengling ; Zeng, Juan ; Wang, Xue ; Qin, Siqian ; Zhang, Chuancai ; Xue, Haodong ; Dai, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-b7a67098ac6a4a51a63335f8b5fe729b8da1babcb85c8621f12c43420053787f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Carbonization</topic><topic>Chelation</topic><topic>Core-shell structure</topic><topic>Dopamine</topic><topic>Flow velocity</topic><topic>Liquid flow</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Potentiometers</topic><topic>Shape effects</topic><topic>Slaked lime</topic><topic>Spherical shells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Weihan</creatorcontrib><creatorcontrib>Gong, Jiang</creatorcontrib><creatorcontrib>Zhang, Hanqing</creatorcontrib><creatorcontrib>Zheng, Fengling</creatorcontrib><creatorcontrib>Zeng, Juan</creatorcontrib><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Qin, Siqian</creatorcontrib><creatorcontrib>Zhang, Chuancai</creatorcontrib><creatorcontrib>Xue, Haodong</creatorcontrib><creatorcontrib>Dai, Bin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Particle & particle systems characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Weihan</au><au>Gong, Jiang</au><au>Zhang, Hanqing</au><au>Zheng, Fengling</au><au>Zeng, Juan</au><au>Wang, Xue</au><au>Qin, Siqian</au><au>Zhang, Chuancai</au><au>Xue, Haodong</au><au>Dai, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano‐Calcium Carbonate with Core–Shell Structure was Prepared by Dopamine Chelation Using Pluronic F‐127 as Template</atitle><jtitle>Particle & particle systems characterization</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>41</volume><issue>7</issue><issn>0934-0866</issn><eissn>1521-4117</eissn><abstract>Herein, a new template carbonization method is used to prepare calcite‐type nano‐calcium carbonate (CaCO
3
) with a core–shell structure using calcium hydroxide as a solute and Pluronic F‐127 as a templating and pore‐forming agent. Dopamine hydrochloride is added to control the size of calcium hydroxide particles. The morphology, particle size, and crystal type of CaCO
3
are characterized via transmission electron microscopy, X‐ray diffraction, nanoparticle size, and zeta potentiometer. The creation of core–shell calcium carbonate nanoparticles is examined in relation to reaction circumstances (i.e., additive sequence, additive amount, and additive mixing time), carbonization temperature, liquid flow rate, and templates with varying chain lengths. Furthermore, a discussion is held regarding the formation mechanism of spherical core–shell calcium carbonate that is created using the innovative template carbonization method. The results show that the order, amount, liquid flow rate, and template type of additives have a significant effect on the crystal shape of calcium carbonate nanoparticles. The mixing time of additives has a significant effect on the particle size of calcium carbonate nanoparticles. Interestingly, the thickness of the shell depends on the carbonization temperature, and too slow or too fast flow rate will lead to the formation of cyclic calcium carbonate nanoparticles.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppsc.202300199</doi><orcidid>https://orcid.org/0000-0001-8743-0991</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-0866 |
ispartof | Particle & particle systems characterization, 2024-07, Vol.41 (7) |
issn | 0934-0866 1521-4117 |
language | eng |
recordid | cdi_proquest_journals_3083048608 |
source | Wiley Blackwell Single Titles |
subjects | Additives Calcite Calcium carbonate Carbonization Chelation Core-shell structure Dopamine Flow velocity Liquid flow Nanoparticles Particle size Potentiometers Shape effects Slaked lime Spherical shells Thickness |
title | Nano‐Calcium Carbonate with Core–Shell Structure was Prepared by Dopamine Chelation Using Pluronic F‐127 as Template |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%E2%80%90Calcium%20Carbonate%20with%20Core%E2%80%93Shell%20Structure%20was%20Prepared%20by%20Dopamine%20Chelation%20Using%20Pluronic%20F%E2%80%90127%20as%20Template&rft.jtitle=Particle%20&%20particle%20systems%20characterization&rft.au=Shu,%20Weihan&rft.date=2024-07-01&rft.volume=41&rft.issue=7&rft.issn=0934-0866&rft.eissn=1521-4117&rft_id=info:doi/10.1002/ppsc.202300199&rft_dat=%3Cproquest_cross%3E3083048608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083048608&rft_id=info:pmid/&rfr_iscdi=true |