Advanced model based machine learning technique for early stage prediction of ankylosing spondylitis under timely analysis with featured textures
In the medical field, ankylosing spondylitis (AS) is arthritis with symptoms that differs from person to person and takes a long time to evaluate. For predicting radiographic progression, the prediction within the prognostics employing the approach of time-series records performed reasonably well wh...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-01, Vol.83 (26), p.68393-68413 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the medical field, ankylosing spondylitis (AS) is arthritis with symptoms that differs from person to person and takes a long time to evaluate. For predicting radiographic progression, the prediction within the prognostics employing the approach of time-series records performed reasonably well when used with clinical variables from the first visit dataset. The integration and analysis of numerous variables of different types had limitations as per prior research work under statistical analysis on the radiographic progressions. With the time-series approach propagated through the records fed via electronic means, the study has been developed utilizing machine learning models (ML) for radiographic progression estimation among patients impacted towards AS. These models' performance might be enhanced by adding more data, including radiography of the spinal column or even the lifetime data. Comparison has been made within Model A/diagnostic B's precision through the development of clinical model gaining the reach of 2.5% subjected to spondylarthritis characteristics listed in the categorization criteria attributed to Spondylarthritis Assessment under International Society. Furthermore, the abridged model with linear regression gained a reach of 2.6% for viability with a lower range Model of A/B. Therefore, Model A/B has achieved superior development clinically within the model for the prediction of prognostics of patients affected by AS; its use may help with the early detection and diagnosis of AS. |
---|---|
ISSN: | 1573-7721 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-024-18236-6 |