A remark on discrete Brunn–Minkowski type inequalities via transportation of measure
We give an alternative proof for discrete Brunn–Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weighted versions of these inequalities. Our approach generalizes ideas of Gozlan, Roberto, Samson and Tetali from the theory...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2024-06, Vol.261 (2), p.791-807 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an alternative proof for discrete Brunn–Minkowski type inequalities, recently obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger weighted versions of these inequalities. Our approach generalizes ideas of Gozlan, Roberto, Samson and Tetali from the theory of measure transportation and provides new displacement convexity of entropy type inequalities on the
n
-dimensional integer lattice. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-023-2596-3 |