On uniqueness and plentitude of subsymmetric sequences

We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su( T *) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2024-06, Vol.261 (2), p.613-636
Hauptverfasser: Casazza, Peter G., Dilworth, Stephen J., Kutzarova, Denka, Motakis, Pavlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 2
container_start_page 613
container_title Israel journal of mathematics
container_volume 261
creator Casazza, Peter G.
Dilworth, Stephen J.
Kutzarova, Denka
Motakis, Pavlos
description We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su( T *) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su( T *)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some ℓ p or c 0 .
doi_str_mv 10.1007/s11856-023-2589-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082954892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082954892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-351cd29f0f39b4959994e8e939c0b2a3505982b6dd5de02ddcff01e9220a75a73</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9giMRuen-vEHlEFFKlSF5itxB8oVesUv2TovydRkJiY7nLuvdJh7F7AowConkgIrUoOKDkqbThesIVQpeJaCXHJFgAoOIoKr9kN0R5AyUrIBSt3qRhS-z2EFIiKOvnidAipb_vBh6KLBQ0NnY_H0OfWFRQm0AW6ZVexPlC4-80l-3x9-Vhv-Hb39r5-3nKHpe65VMJ5NBGiNM3KKGPMKuhgpHHQYC0VKKOxKb1XPgB672IEEQwi1JWqK7lkD_PuKXfjNfV23w05jZdWgkajVtrgSImZcrkjyiHaU26PdT5bAXbSY2c9dtRjJz126uDcoZFNXyH_Lf9f-gFDoGc3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082954892</pqid></control><display><type>article</type><title>On uniqueness and plentitude of subsymmetric sequences</title><source>SpringerLink Journals - AutoHoldings</source><creator>Casazza, Peter G. ; Dilworth, Stephen J. ; Kutzarova, Denka ; Motakis, Pavlos</creator><creatorcontrib>Casazza, Peter G. ; Dilworth, Stephen J. ; Kutzarova, Denka ; Motakis, Pavlos</creatorcontrib><description>We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su( T *) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su( T *)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some ℓ p or c 0 .</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-023-2589-2</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Banach spaces ; Criteria ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical</subject><ispartof>Israel journal of mathematics, 2024-06, Vol.261 (2), p.613-636</ispartof><rights>The Hebrew University of Jerusalem 2023</rights><rights>The Hebrew University of Jerusalem 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-351cd29f0f39b4959994e8e939c0b2a3505982b6dd5de02ddcff01e9220a75a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-023-2589-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-023-2589-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Casazza, Peter G.</creatorcontrib><creatorcontrib>Dilworth, Stephen J.</creatorcontrib><creatorcontrib>Kutzarova, Denka</creatorcontrib><creatorcontrib>Motakis, Pavlos</creatorcontrib><title>On uniqueness and plentitude of subsymmetric sequences</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su( T *) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su( T *)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some ℓ p or c 0 .</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Criteria</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9giMRuen-vEHlEFFKlSF5itxB8oVesUv2TovydRkJiY7nLuvdJh7F7AowConkgIrUoOKDkqbThesIVQpeJaCXHJFgAoOIoKr9kN0R5AyUrIBSt3qRhS-z2EFIiKOvnidAipb_vBh6KLBQ0NnY_H0OfWFRQm0AW6ZVexPlC4-80l-3x9-Vhv-Hb39r5-3nKHpe65VMJ5NBGiNM3KKGPMKuhgpHHQYC0VKKOxKb1XPgB672IEEQwi1JWqK7lkD_PuKXfjNfV23w05jZdWgkajVtrgSImZcrkjyiHaU26PdT5bAXbSY2c9dtRjJz126uDcoZFNXyH_Lf9f-gFDoGc3</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Casazza, Peter G.</creator><creator>Dilworth, Stephen J.</creator><creator>Kutzarova, Denka</creator><creator>Motakis, Pavlos</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On uniqueness and plentitude of subsymmetric sequences</title><author>Casazza, Peter G. ; Dilworth, Stephen J. ; Kutzarova, Denka ; Motakis, Pavlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-351cd29f0f39b4959994e8e939c0b2a3505982b6dd5de02ddcff01e9220a75a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Criteria</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casazza, Peter G.</creatorcontrib><creatorcontrib>Dilworth, Stephen J.</creatorcontrib><creatorcontrib>Kutzarova, Denka</creatorcontrib><creatorcontrib>Motakis, Pavlos</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casazza, Peter G.</au><au>Dilworth, Stephen J.</au><au>Kutzarova, Denka</au><au>Motakis, Pavlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On uniqueness and plentitude of subsymmetric sequences</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>261</volume><issue>2</issue><spage>613</spage><epage>636</epage><pages>613-636</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We explore the diversity of subsymmetric basic sequences in spaces with a subsymmetric basis. We prove that the subsymmetrization Su( T *) of Tsirelson’s original Banach space provides the first known example of a space with a unique subsymmetric basic sequence that is additionally non-symmetric. Contrastingly, we provide a criterion for a space with a sub-symmetric basis to contain a continuum of nonequivalent subsymmetric basic sequences and apply it to Su( T *)*. Finally, we provide a criterion for a subsymmetric sequence to be equivalent to the unit vector basis of some ℓ p or c 0 .</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-023-2589-2</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2024-06, Vol.261 (2), p.613-636
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_3082954892
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Banach spaces
Criteria
Group Theory and Generalizations
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
title On uniqueness and plentitude of subsymmetric sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20uniqueness%20and%20plentitude%20of%20subsymmetric%20sequences&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Casazza,%20Peter%20G.&rft.date=2024-06-01&rft.volume=261&rft.issue=2&rft.spage=613&rft.epage=636&rft.pages=613-636&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-023-2589-2&rft_dat=%3Cproquest_cross%3E3082954892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082954892&rft_id=info:pmid/&rfr_iscdi=true