Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques

The goal of the current study is to investigate the thermal degradation of palm fronds (PF), olive leaves (OL), and wheat straw (WS) through pyrolysis and calculate their kinetic data using TG-DTG and DTA approaches. The kinetic parameters were assessed using isoconversional techniques like the Ozaw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomass conversion and biorefinery 2024-08, Vol.14 (15), p.17779-17803
Hauptverfasser: El-Sayed, Saad A., Khass, Tarek M., Mostafa, Mohamed E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17803
container_issue 15
container_start_page 17779
container_title Biomass conversion and biorefinery
container_volume 14
creator El-Sayed, Saad A.
Khass, Tarek M.
Mostafa, Mohamed E.
description The goal of the current study is to investigate the thermal degradation of palm fronds (PF), olive leaves (OL), and wheat straw (WS) through pyrolysis and calculate their kinetic data using TG-DTG and DTA approaches. The kinetic parameters were assessed using isoconversional techniques like the Ozawa-Flynn-Wall (OFW) and Kissinger–Akahira–Sunose (KAS) methods, as well as model-fitting techniques like the integral method, which employs various diffusion and reaction order models. Using kinetics data models, typical parameters for pyrolysis and thermodynamics were estimated. For PF, OL, and WS, the values of activation energy ( E ) from the integral method ranged between 8.82 and 167.13, 23.06 and 149.20, and 11.01 and 156.27, respectively, for diffusion models. On the other hand, the values of ( E ) ranged between 22.3 and 117.49, 51.69 and 92.88, and 23.48 and 125.97, respectively, for reaction-order models. The average activation energies ( E ) calculated by using PF, OL, and WS samples are 91.9, 69.1, and 65.2, respectively, for the OFW method and 87.5, 101.8, and 63.4, respectively, for the KAS method. The results demonstrated that the integral method provided values of ( E ) that were almost identical to those produced by the KAS and OFW methods. In the same range of ( α ), results showed that reaction order models yielded greater frequency factor values than diffusion models, demonstrating how simpler and quicker pyrolysis is. The values of ( Δ G av ) demonstrated the acceptability of these materials for pyrolysis, and for the OFW and KAS techniques, the sequence of the degradation process was OL > WS > PF. The calculated ( Δ G av ) showed that more heat energies are required for OL, PF, and WS to dissociate the reagent bonds, which agrees with the ( E ) values derived from the OFW model. Graphical Abstract
doi_str_mv 10.1007/s13399-023-03926-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082954826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082954826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3ce27701e8d009149c87d39aa14597adde2034954969e1993caa4c7888e73773</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA57VJZrtJjqVqFQpe9h7SbNpN7e7WzFbovzftit48DPPB884wLyH3nD1yxuQUOYDWGROQMdCiyMQVGQmuWVYoAde_NZ_dkgnijrGESlDARgTL2sfG7mnlt9FWtg9dS9e-tl-hO0Zq24q62jfBJeQjtL4PLg1stK73MWBqkXYbug5dYxHp4RS7_QkD0iOGdkvL5fTpEnPae1e34fPo8Y7cbOwe_eQnj0n58lwuXrPV-_JtMV9lDgroM3BeSMm4VxVjmufaKVmBtpbnMy1tVXnBINezXBfac63BWZs7qZTyEqSEMXkY1h5idz7bm116qU0XDTAlklCJIlFioFzsEKPfmEMMjY0nw5k522sGe03yzFzsNSKJYBBhgtutj3-r_1F9A5qyfYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082954826</pqid></control><display><type>article</type><title>Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques</title><source>SpringerLink Journals</source><creator>El-Sayed, Saad A. ; Khass, Tarek M. ; Mostafa, Mohamed E.</creator><creatorcontrib>El-Sayed, Saad A. ; Khass, Tarek M. ; Mostafa, Mohamed E.</creatorcontrib><description>The goal of the current study is to investigate the thermal degradation of palm fronds (PF), olive leaves (OL), and wheat straw (WS) through pyrolysis and calculate their kinetic data using TG-DTG and DTA approaches. The kinetic parameters were assessed using isoconversional techniques like the Ozawa-Flynn-Wall (OFW) and Kissinger–Akahira–Sunose (KAS) methods, as well as model-fitting techniques like the integral method, which employs various diffusion and reaction order models. Using kinetics data models, typical parameters for pyrolysis and thermodynamics were estimated. For PF, OL, and WS, the values of activation energy ( E ) from the integral method ranged between 8.82 and 167.13, 23.06 and 149.20, and 11.01 and 156.27, respectively, for diffusion models. On the other hand, the values of ( E ) ranged between 22.3 and 117.49, 51.69 and 92.88, and 23.48 and 125.97, respectively, for reaction-order models. The average activation energies ( E ) calculated by using PF, OL, and WS samples are 91.9, 69.1, and 65.2, respectively, for the OFW method and 87.5, 101.8, and 63.4, respectively, for the KAS method. The results demonstrated that the integral method provided values of ( E ) that were almost identical to those produced by the KAS and OFW methods. In the same range of ( α ), results showed that reaction order models yielded greater frequency factor values than diffusion models, demonstrating how simpler and quicker pyrolysis is. The values of ( Δ G av ) demonstrated the acceptability of these materials for pyrolysis, and for the OFW and KAS techniques, the sequence of the degradation process was OL &gt; WS &gt; PF. The calculated ( Δ G av ) showed that more heat energies are required for OL, PF, and WS to dissociate the reagent bonds, which agrees with the ( E ) values derived from the OFW model. Graphical Abstract</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-023-03926-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Biotechnology ; Differential thermal analysis ; Energy ; Original Article ; Parameter estimation ; Pyrolysis ; Reagents ; Renewable and Green Energy ; Thermal degradation</subject><ispartof>Biomass conversion and biorefinery, 2024-08, Vol.14 (15), p.17779-17803</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3ce27701e8d009149c87d39aa14597adde2034954969e1993caa4c7888e73773</citedby><cites>FETCH-LOGICAL-c363t-3ce27701e8d009149c87d39aa14597adde2034954969e1993caa4c7888e73773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13399-023-03926-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13399-023-03926-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>El-Sayed, Saad A.</creatorcontrib><creatorcontrib>Khass, Tarek M.</creatorcontrib><creatorcontrib>Mostafa, Mohamed E.</creatorcontrib><title>Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>The goal of the current study is to investigate the thermal degradation of palm fronds (PF), olive leaves (OL), and wheat straw (WS) through pyrolysis and calculate their kinetic data using TG-DTG and DTA approaches. The kinetic parameters were assessed using isoconversional techniques like the Ozawa-Flynn-Wall (OFW) and Kissinger–Akahira–Sunose (KAS) methods, as well as model-fitting techniques like the integral method, which employs various diffusion and reaction order models. Using kinetics data models, typical parameters for pyrolysis and thermodynamics were estimated. For PF, OL, and WS, the values of activation energy ( E ) from the integral method ranged between 8.82 and 167.13, 23.06 and 149.20, and 11.01 and 156.27, respectively, for diffusion models. On the other hand, the values of ( E ) ranged between 22.3 and 117.49, 51.69 and 92.88, and 23.48 and 125.97, respectively, for reaction-order models. The average activation energies ( E ) calculated by using PF, OL, and WS samples are 91.9, 69.1, and 65.2, respectively, for the OFW method and 87.5, 101.8, and 63.4, respectively, for the KAS method. The results demonstrated that the integral method provided values of ( E ) that were almost identical to those produced by the KAS and OFW methods. In the same range of ( α ), results showed that reaction order models yielded greater frequency factor values than diffusion models, demonstrating how simpler and quicker pyrolysis is. The values of ( Δ G av ) demonstrated the acceptability of these materials for pyrolysis, and for the OFW and KAS techniques, the sequence of the degradation process was OL &gt; WS &gt; PF. The calculated ( Δ G av ) showed that more heat energies are required for OL, PF, and WS to dissociate the reagent bonds, which agrees with the ( E ) values derived from the OFW model. Graphical Abstract</description><subject>Activation energy</subject><subject>Biotechnology</subject><subject>Differential thermal analysis</subject><subject>Energy</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Pyrolysis</subject><subject>Reagents</subject><subject>Renewable and Green Energy</subject><subject>Thermal degradation</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA57VJZrtJjqVqFQpe9h7SbNpN7e7WzFbovzftit48DPPB884wLyH3nD1yxuQUOYDWGROQMdCiyMQVGQmuWVYoAde_NZ_dkgnijrGESlDARgTL2sfG7mnlt9FWtg9dS9e-tl-hO0Zq24q62jfBJeQjtL4PLg1stK73MWBqkXYbug5dYxHp4RS7_QkD0iOGdkvL5fTpEnPae1e34fPo8Y7cbOwe_eQnj0n58lwuXrPV-_JtMV9lDgroM3BeSMm4VxVjmufaKVmBtpbnMy1tVXnBINezXBfac63BWZs7qZTyEqSEMXkY1h5idz7bm116qU0XDTAlklCJIlFioFzsEKPfmEMMjY0nw5k522sGe03yzFzsNSKJYBBhgtutj3-r_1F9A5qyfYY</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>El-Sayed, Saad A.</creator><creator>Khass, Tarek M.</creator><creator>Mostafa, Mohamed E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques</title><author>El-Sayed, Saad A. ; Khass, Tarek M. ; Mostafa, Mohamed E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3ce27701e8d009149c87d39aa14597adde2034954969e1993caa4c7888e73773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activation energy</topic><topic>Biotechnology</topic><topic>Differential thermal analysis</topic><topic>Energy</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Pyrolysis</topic><topic>Reagents</topic><topic>Renewable and Green Energy</topic><topic>Thermal degradation</topic><toplevel>online_resources</toplevel><creatorcontrib>El-Sayed, Saad A.</creatorcontrib><creatorcontrib>Khass, Tarek M.</creatorcontrib><creatorcontrib>Mostafa, Mohamed E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Sayed, Saad A.</au><au>Khass, Tarek M.</au><au>Mostafa, Mohamed E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>14</volume><issue>15</issue><spage>17779</spage><epage>17803</epage><pages>17779-17803</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>The goal of the current study is to investigate the thermal degradation of palm fronds (PF), olive leaves (OL), and wheat straw (WS) through pyrolysis and calculate their kinetic data using TG-DTG and DTA approaches. The kinetic parameters were assessed using isoconversional techniques like the Ozawa-Flynn-Wall (OFW) and Kissinger–Akahira–Sunose (KAS) methods, as well as model-fitting techniques like the integral method, which employs various diffusion and reaction order models. Using kinetics data models, typical parameters for pyrolysis and thermodynamics were estimated. For PF, OL, and WS, the values of activation energy ( E ) from the integral method ranged between 8.82 and 167.13, 23.06 and 149.20, and 11.01 and 156.27, respectively, for diffusion models. On the other hand, the values of ( E ) ranged between 22.3 and 117.49, 51.69 and 92.88, and 23.48 and 125.97, respectively, for reaction-order models. The average activation energies ( E ) calculated by using PF, OL, and WS samples are 91.9, 69.1, and 65.2, respectively, for the OFW method and 87.5, 101.8, and 63.4, respectively, for the KAS method. The results demonstrated that the integral method provided values of ( E ) that were almost identical to those produced by the KAS and OFW methods. In the same range of ( α ), results showed that reaction order models yielded greater frequency factor values than diffusion models, demonstrating how simpler and quicker pyrolysis is. The values of ( Δ G av ) demonstrated the acceptability of these materials for pyrolysis, and for the OFW and KAS techniques, the sequence of the degradation process was OL &gt; WS &gt; PF. The calculated ( Δ G av ) showed that more heat energies are required for OL, PF, and WS to dissociate the reagent bonds, which agrees with the ( E ) values derived from the OFW model. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-023-03926-2</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-6815
ispartof Biomass conversion and biorefinery, 2024-08, Vol.14 (15), p.17779-17803
issn 2190-6815
2190-6823
language eng
recordid cdi_proquest_journals_3082954826
source SpringerLink Journals
subjects Activation energy
Biotechnology
Differential thermal analysis
Energy
Original Article
Parameter estimation
Pyrolysis
Reagents
Renewable and Green Energy
Thermal degradation
title Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20degradation%20behaviour%20and%20chemical%20kinetic%20characteristics%20of%20biomass%20pyrolysis%20using%20TG/DTG/DTA%20techniques&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=El-Sayed,%20Saad%20A.&rft.date=2024-08-01&rft.volume=14&rft.issue=15&rft.spage=17779&rft.epage=17803&rft.pages=17779-17803&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-023-03926-2&rft_dat=%3Cproquest_cross%3E3082954826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082954826&rft_id=info:pmid/&rfr_iscdi=true