Performance Analysis of Computational Intelligence Correction
Kalman filter (KF) is a widely used navigation algorithm, especially for precise positioning applications. However, the exact filter parameters must be defined a priori to use standard Kalman filters for coping with low error values. But for the dynamic system model, the covariance of process noise...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2024-07, Vol.137 (2), p.881-891 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | 2 |
container_start_page | 881 |
container_title | Wireless personal communications |
container_volume | 137 |
creator | Arasavali, Nalineekumari Gottapu, Sasibhushana Rao |
description | Kalman filter (KF) is a widely used navigation algorithm, especially for precise positioning applications. However, the exact filter parameters must be defined a priori to use standard Kalman filters for coping with low error values. But for the dynamic system model, the covariance of process noise is a priori entirely undefined, which results in difficulties and challenges in the implementation of the conventional Kalman filter. Kalman Filter with recursive covariance estimation applied to solve those complicated functional issues, which can also be used in many other applications involving Kalaman filtering technology, a modified Kalman filter called MKF-RCE. While this is a better approach, KF with SAR tuned covariance has been proposed to resolve the problem of estimation for the dynamic model. The data collected at (x: 706,970.9093 m, y: 6,035,941.0226 m, z: 1,930,009.5821 m) used to illustrate the performance analysis of KF with recursive covariance and KF with computational intelligence correction by means of SAR (Search and Rescue) tuned covariance, when the covariance matrices of process and measurement noises are completely unknown in advance. |
doi_str_mv | 10.1007/s11277-024-11399-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082827290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082827290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-48e90dd7009d8b6e11b43a9400d122367355c95a83b64af726d1f78cae3b96073</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-hk0jbJwcNSdF1Y0IOCt5C26dKlbWrSPezbm7WCN08DM98_M3yE3DK4ZwDiITCGQlDAlDLGlaL8jCxYJpBKnn6ekwUoVDRHhpfkKoQ9QIwpXJDHN-sb53szVDZZDaY7hjYkrkkK14-HyUyti81kM0y269qdPWGF895Wp8k1uWhMF-zNb12Sj-en9-KFbl_Xm2K1pRUCTDSVVkFdi3iylmVuGStTblQKUDNEngueZZXKjORlnppGYF6zRsjKWF6qHARfkrt57-jd18GGSe_dwcfHguYgUaJABZHCmaq8C8HbRo--7Y0_agb6pEnPmnTUpH80aR5DfA6FCA876_9W_5P6Bmr-abY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082827290</pqid></control><display><type>article</type><title>Performance Analysis of Computational Intelligence Correction</title><source>Springer Nature - Complete Springer Journals</source><creator>Arasavali, Nalineekumari ; Gottapu, Sasibhushana Rao</creator><creatorcontrib>Arasavali, Nalineekumari ; Gottapu, Sasibhushana Rao</creatorcontrib><description>Kalman filter (KF) is a widely used navigation algorithm, especially for precise positioning applications. However, the exact filter parameters must be defined a priori to use standard Kalman filters for coping with low error values. But for the dynamic system model, the covariance of process noise is a priori entirely undefined, which results in difficulties and challenges in the implementation of the conventional Kalman filter. Kalman Filter with recursive covariance estimation applied to solve those complicated functional issues, which can also be used in many other applications involving Kalaman filtering technology, a modified Kalman filter called MKF-RCE. While this is a better approach, KF with SAR tuned covariance has been proposed to resolve the problem of estimation for the dynamic model. The data collected at (x: 706,970.9093 m, y: 6,035,941.0226 m, z: 1,930,009.5821 m) used to illustrate the performance analysis of KF with recursive covariance and KF with computational intelligence correction by means of SAR (Search and Rescue) tuned covariance, when the covariance matrices of process and measurement noises are completely unknown in advance.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-024-11399-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Communications Engineering ; Computer Communication Networks ; Covariance matrix ; Dynamic models ; Dynamical systems ; Engineering ; Error analysis ; Error correction ; Intelligence ; Kalman filters ; Networks ; Parameter modification ; Recursive functions ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2024-07, Vol.137 (2), p.881-891</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-48e90dd7009d8b6e11b43a9400d122367355c95a83b64af726d1f78cae3b96073</cites><orcidid>0000-0002-4849-2839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-024-11399-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-024-11399-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Arasavali, Nalineekumari</creatorcontrib><creatorcontrib>Gottapu, Sasibhushana Rao</creatorcontrib><title>Performance Analysis of Computational Intelligence Correction</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Kalman filter (KF) is a widely used navigation algorithm, especially for precise positioning applications. However, the exact filter parameters must be defined a priori to use standard Kalman filters for coping with low error values. But for the dynamic system model, the covariance of process noise is a priori entirely undefined, which results in difficulties and challenges in the implementation of the conventional Kalman filter. Kalman Filter with recursive covariance estimation applied to solve those complicated functional issues, which can also be used in many other applications involving Kalaman filtering technology, a modified Kalman filter called MKF-RCE. While this is a better approach, KF with SAR tuned covariance has been proposed to resolve the problem of estimation for the dynamic model. The data collected at (x: 706,970.9093 m, y: 6,035,941.0226 m, z: 1,930,009.5821 m) used to illustrate the performance analysis of KF with recursive covariance and KF with computational intelligence correction by means of SAR (Search and Rescue) tuned covariance, when the covariance matrices of process and measurement noises are completely unknown in advance.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Covariance matrix</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Intelligence</subject><subject>Kalman filters</subject><subject>Networks</subject><subject>Parameter modification</subject><subject>Recursive functions</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-hk0jbJwcNSdF1Y0IOCt5C26dKlbWrSPezbm7WCN08DM98_M3yE3DK4ZwDiITCGQlDAlDLGlaL8jCxYJpBKnn6ekwUoVDRHhpfkKoQ9QIwpXJDHN-sb53szVDZZDaY7hjYkrkkK14-HyUyti81kM0y269qdPWGF895Wp8k1uWhMF-zNb12Sj-en9-KFbl_Xm2K1pRUCTDSVVkFdi3iylmVuGStTblQKUDNEngueZZXKjORlnppGYF6zRsjKWF6qHARfkrt57-jd18GGSe_dwcfHguYgUaJABZHCmaq8C8HbRo--7Y0_agb6pEnPmnTUpH80aR5DfA6FCA876_9W_5P6Bmr-abY</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Arasavali, Nalineekumari</creator><creator>Gottapu, Sasibhushana Rao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4849-2839</orcidid></search><sort><creationdate>20240701</creationdate><title>Performance Analysis of Computational Intelligence Correction</title><author>Arasavali, Nalineekumari ; Gottapu, Sasibhushana Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-48e90dd7009d8b6e11b43a9400d122367355c95a83b64af726d1f78cae3b96073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Covariance matrix</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Intelligence</topic><topic>Kalman filters</topic><topic>Networks</topic><topic>Parameter modification</topic><topic>Recursive functions</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arasavali, Nalineekumari</creatorcontrib><creatorcontrib>Gottapu, Sasibhushana Rao</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arasavali, Nalineekumari</au><au>Gottapu, Sasibhushana Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of Computational Intelligence Correction</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>137</volume><issue>2</issue><spage>881</spage><epage>891</epage><pages>881-891</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Kalman filter (KF) is a widely used navigation algorithm, especially for precise positioning applications. However, the exact filter parameters must be defined a priori to use standard Kalman filters for coping with low error values. But for the dynamic system model, the covariance of process noise is a priori entirely undefined, which results in difficulties and challenges in the implementation of the conventional Kalman filter. Kalman Filter with recursive covariance estimation applied to solve those complicated functional issues, which can also be used in many other applications involving Kalaman filtering technology, a modified Kalman filter called MKF-RCE. While this is a better approach, KF with SAR tuned covariance has been proposed to resolve the problem of estimation for the dynamic model. The data collected at (x: 706,970.9093 m, y: 6,035,941.0226 m, z: 1,930,009.5821 m) used to illustrate the performance analysis of KF with recursive covariance and KF with computational intelligence correction by means of SAR (Search and Rescue) tuned covariance, when the covariance matrices of process and measurement noises are completely unknown in advance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-024-11399-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4849-2839</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2024-07, Vol.137 (2), p.881-891 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_3082827290 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Communications Engineering Computer Communication Networks Covariance matrix Dynamic models Dynamical systems Engineering Error analysis Error correction Intelligence Kalman filters Networks Parameter modification Recursive functions Signal,Image and Speech Processing |
title | Performance Analysis of Computational Intelligence Correction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20Computational%20Intelligence%20Correction&rft.jtitle=Wireless%20personal%20communications&rft.au=Arasavali,%20Nalineekumari&rft.date=2024-07-01&rft.volume=137&rft.issue=2&rft.spage=881&rft.epage=891&rft.pages=881-891&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-024-11399-3&rft_dat=%3Cproquest_cross%3E3082827290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082827290&rft_id=info:pmid/&rfr_iscdi=true |