Pathways to hyperchaos in a three-dimensional quadratic map
This paper deals with various routes to hyperchaos with all three positive Lyapunov exponents in a three-dimensional quadratic map. The map under consideration displays strong hyperchaoticity in the sense that in a wider range of parameter space, the system showcases three positive Lyapunov exponent...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2024-07, Vol.139 (7), p.636, Article 636 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 636 |
container_title | European physical journal plus |
container_volume | 139 |
creator | Muni, Sishu Shankar |
description | This paper deals with various routes to hyperchaos with all three positive Lyapunov exponents in a three-dimensional quadratic map. The map under consideration displays strong hyperchaoticity in the sense that in a wider range of parameter space, the system showcases three positive Lyapunov exponents. It is shown that the saddle periodic orbits eventually become repellers at this hyperchaotic regime. By computing the distance of the repellers to the attractors as a function of parameters, it is shown that the hyperchaotic attractors absorb the repelling periodic orbits. First, we discuss a route from stable fixed point undergoing period-doubling bifurcations to chaos and then hyperchaos and role of saddle periodic orbits. We then illustrate a route from doubling bifurcation of quasiperiodic closed invariant curves to hyperchaotic attractors. Finally, the presence of weak hyperchaotic flow-like attractors is discussed. |
doi_str_mv | 10.1140/epjp/s13360-024-05438-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082733117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082733117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-dbf3fac0eb1c7b340d0ce0403ebdf16347db2793e98e6fdc8a196db67215ddbd3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsGh_gwue185kt_nAkxS_oKAHPS_7MTEpbZLupkj-vakR9OZcZg7v8zI8jF0h3CAqWFC36RYRpUxBQKIELJXMxXDCZgkWIJZKqdM_9zmbx7iBcVSBqlAzdvtq-urTDJH3La-GjoKrTBt53XDD-yoQCV_vqIl125gt3x-MD6avHd-Z7pKdlWYbaf6zL9j7w_3b6kmsXx6fV3dr4RKEXnhbytI4IIsus1KBB0egQJL1JaZSZd4mWSGpyCktvcsNFqm3aZbg0nvr5QW7nnq70O4PFHu9aQ9hfCdqCXmSSYmYjalsSrnQxhio1F2odyYMGkEfZemjLD3J0qMs_S1LDyOZT2QcieaDwm__f-gX8DxxyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082733117</pqid></control><display><type>article</type><title>Pathways to hyperchaos in a three-dimensional quadratic map</title><source>SpringerLink Journals - AutoHoldings</source><creator>Muni, Sishu Shankar</creator><creatorcontrib>Muni, Sishu Shankar</creatorcontrib><description>This paper deals with various routes to hyperchaos with all three positive Lyapunov exponents in a three-dimensional quadratic map. The map under consideration displays strong hyperchaoticity in the sense that in a wider range of parameter space, the system showcases three positive Lyapunov exponents. It is shown that the saddle periodic orbits eventually become repellers at this hyperchaotic regime. By computing the distance of the repellers to the attractors as a function of parameters, it is shown that the hyperchaotic attractors absorb the repelling periodic orbits. First, we discuss a route from stable fixed point undergoing period-doubling bifurcations to chaos and then hyperchaos and role of saddle periodic orbits. We then illustrate a route from doubling bifurcation of quasiperiodic closed invariant curves to hyperchaotic attractors. Finally, the presence of weak hyperchaotic flow-like attractors is discussed.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-024-05438-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Bifurcations ; Communication ; Complex Systems ; Condensed Matter Physics ; Dynamical systems ; Fixed points (mathematics) ; Liapunov exponents ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Orbits ; Parameters ; Physics ; Physics and Astronomy ; Regular Article ; Theoretical</subject><ispartof>European physical journal plus, 2024-07, Vol.139 (7), p.636, Article 636</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-dbf3fac0eb1c7b340d0ce0403ebdf16347db2793e98e6fdc8a196db67215ddbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05438-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjp/s13360-024-05438-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Muni, Sishu Shankar</creatorcontrib><title>Pathways to hyperchaos in a three-dimensional quadratic map</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>This paper deals with various routes to hyperchaos with all three positive Lyapunov exponents in a three-dimensional quadratic map. The map under consideration displays strong hyperchaoticity in the sense that in a wider range of parameter space, the system showcases three positive Lyapunov exponents. It is shown that the saddle periodic orbits eventually become repellers at this hyperchaotic regime. By computing the distance of the repellers to the attractors as a function of parameters, it is shown that the hyperchaotic attractors absorb the repelling periodic orbits. First, we discuss a route from stable fixed point undergoing period-doubling bifurcations to chaos and then hyperchaos and role of saddle periodic orbits. We then illustrate a route from doubling bifurcation of quasiperiodic closed invariant curves to hyperchaotic attractors. Finally, the presence of weak hyperchaotic flow-like attractors is discussed.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Bifurcations</subject><subject>Communication</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dynamical systems</subject><subject>Fixed points (mathematics)</subject><subject>Liapunov exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsGh_gwue185kt_nAkxS_oKAHPS_7MTEpbZLupkj-vakR9OZcZg7v8zI8jF0h3CAqWFC36RYRpUxBQKIELJXMxXDCZgkWIJZKqdM_9zmbx7iBcVSBqlAzdvtq-urTDJH3La-GjoKrTBt53XDD-yoQCV_vqIl125gt3x-MD6avHd-Z7pKdlWYbaf6zL9j7w_3b6kmsXx6fV3dr4RKEXnhbytI4IIsus1KBB0egQJL1JaZSZd4mWSGpyCktvcsNFqm3aZbg0nvr5QW7nnq70O4PFHu9aQ9hfCdqCXmSSYmYjalsSrnQxhio1F2odyYMGkEfZemjLD3J0qMs_S1LDyOZT2QcieaDwm__f-gX8DxxyA</recordid><startdate>20240720</startdate><enddate>20240720</enddate><creator>Muni, Sishu Shankar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240720</creationdate><title>Pathways to hyperchaos in a three-dimensional quadratic map</title><author>Muni, Sishu Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-dbf3fac0eb1c7b340d0ce0403ebdf16347db2793e98e6fdc8a196db67215ddbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Bifurcations</topic><topic>Communication</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dynamical systems</topic><topic>Fixed points (mathematics)</topic><topic>Liapunov exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muni, Sishu Shankar</creatorcontrib><collection>CrossRef</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muni, Sishu Shankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathways to hyperchaos in a three-dimensional quadratic map</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2024-07-20</date><risdate>2024</risdate><volume>139</volume><issue>7</issue><spage>636</spage><pages>636-</pages><artnum>636</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>This paper deals with various routes to hyperchaos with all three positive Lyapunov exponents in a three-dimensional quadratic map. The map under consideration displays strong hyperchaoticity in the sense that in a wider range of parameter space, the system showcases three positive Lyapunov exponents. It is shown that the saddle periodic orbits eventually become repellers at this hyperchaotic regime. By computing the distance of the repellers to the attractors as a function of parameters, it is shown that the hyperchaotic attractors absorb the repelling periodic orbits. First, we discuss a route from stable fixed point undergoing period-doubling bifurcations to chaos and then hyperchaos and role of saddle periodic orbits. We then illustrate a route from doubling bifurcation of quasiperiodic closed invariant curves to hyperchaotic attractors. Finally, the presence of weak hyperchaotic flow-like attractors is discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-024-05438-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2024-07, Vol.139 (7), p.636, Article 636 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_3082733117 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied and Technical Physics Atomic Bifurcations Communication Complex Systems Condensed Matter Physics Dynamical systems Fixed points (mathematics) Liapunov exponents Mathematical and Computational Physics Molecular Optical and Plasma Physics Orbits Parameters Physics Physics and Astronomy Regular Article Theoretical |
title | Pathways to hyperchaos in a three-dimensional quadratic map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathways%20to%20hyperchaos%20in%20a%20three-dimensional%20quadratic%20map&rft.jtitle=European%20physical%20journal%20plus&rft.au=Muni,%20Sishu%20Shankar&rft.date=2024-07-20&rft.volume=139&rft.issue=7&rft.spage=636&rft.pages=636-&rft.artnum=636&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-024-05438-y&rft_dat=%3Cproquest_cross%3E3082733117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082733117&rft_id=info:pmid/&rfr_iscdi=true |