Electrically Controlled Interfacial Charge Transfer Induced Excitons in MoSe2-WSe2 Lateral Heterostructure
Controlling excitons and their transport in two-dimensional (2D) transition metal dichalcogenides (TMDs) heterostructures is central to advancing photonics and electronics on-chip integration. We investigate the controlled generation and manipulation of excitons and their complexes in monolayer (1L)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kundu, Baisali Mondal, Priyanka Tebbe, David Hassan, Md Nur Chakraborty, Suman Kumar Metzelaars, Marvin Kögerler, Paul Karmakar, Debjani Stampfer, Christoph Beschoten, Bernd Waldecker, Lutz Sahoo, Prasana Kumar |
description | Controlling excitons and their transport in two-dimensional (2D) transition metal dichalcogenides (TMDs) heterostructures is central to advancing photonics and electronics on-chip integration. We investigate the controlled generation and manipulation of excitons and their complexes in monolayer (1L) MoSe2-WSe2 lateral heterostructure (LHS), directly grown via water-assisted chemical vapor deposition. Using a field-effect transistor design by incorporating a few-layer graphene back gate, single-layer graphene edge contact and encapsulation with few-layer hexagonal boron nitride, we achieve precise electrical tuning of exciton complexes and their transfer across 1D interfaces. At cryogenic temperatures (4 K), photoluminescence and photocurrent maps reveal the synergistic effect of local electric field and interface phenomena in the modulation of excitons, trions, and free carriers. We observe spatial variations in exciton and trion densities driven by exciton-trion conversion under electrical manipulation. The first-principle density functional theory calculation reveals significant band modification at the lateral interfaces and graphene-TMDs contact region. Furthermore, we demonstrate the versatility of 2D TMDS LHS in hosting and manipulating quantum emitters, achieving precise control over narrow-band emissions through modulating carrier injection and electrical biasing. This work extends the boundary of the present understanding of excitonic behaviour within lateral heterojunctions, highlighting the potential for controlled exciton manipulation across 1D interfaces and paving the way for next-generation electro-optical quantum devices. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3082704555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082704555</sourcerecordid><originalsourceid>FETCH-proquest_journals_30827045553</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMgWLR3CLguxKS13ZdKBV1ZcCkh_dWUkOhPAnp7s_AAbmYWbx7MgmRciF3RlJyvSO79zBjj-5pXlcjI3BlQAbWSxnxo62xAZwyM9GgD4CSVloa2D4l3oANK6yfAxMao0qZ7Kx2c9VRbenYX4MU1BT3JpCath9TOB4wqRIQNWU7SeMh_vSbbQze0ffFE94rgw212EW1CN8EaXrOyShf_W30B7ElIcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082704555</pqid></control><display><type>article</type><title>Electrically Controlled Interfacial Charge Transfer Induced Excitons in MoSe2-WSe2 Lateral Heterostructure</title><source>Free E- Journals</source><creator>Kundu, Baisali ; Mondal, Priyanka ; Tebbe, David ; Hassan, Md Nur ; Chakraborty, Suman Kumar ; Metzelaars, Marvin ; Kögerler, Paul ; Karmakar, Debjani ; Stampfer, Christoph ; Beschoten, Bernd ; Waldecker, Lutz ; Sahoo, Prasana Kumar</creator><creatorcontrib>Kundu, Baisali ; Mondal, Priyanka ; Tebbe, David ; Hassan, Md Nur ; Chakraborty, Suman Kumar ; Metzelaars, Marvin ; Kögerler, Paul ; Karmakar, Debjani ; Stampfer, Christoph ; Beschoten, Bernd ; Waldecker, Lutz ; Sahoo, Prasana Kumar</creatorcontrib><description>Controlling excitons and their transport in two-dimensional (2D) transition metal dichalcogenides (TMDs) heterostructures is central to advancing photonics and electronics on-chip integration. We investigate the controlled generation and manipulation of excitons and their complexes in monolayer (1L) MoSe2-WSe2 lateral heterostructure (LHS), directly grown via water-assisted chemical vapor deposition. Using a field-effect transistor design by incorporating a few-layer graphene back gate, single-layer graphene edge contact and encapsulation with few-layer hexagonal boron nitride, we achieve precise electrical tuning of exciton complexes and their transfer across 1D interfaces. At cryogenic temperatures (4 K), photoluminescence and photocurrent maps reveal the synergistic effect of local electric field and interface phenomena in the modulation of excitons, trions, and free carriers. We observe spatial variations in exciton and trion densities driven by exciton-trion conversion under electrical manipulation. The first-principle density functional theory calculation reveals significant band modification at the lateral interfaces and graphene-TMDs contact region. Furthermore, we demonstrate the versatility of 2D TMDS LHS in hosting and manipulating quantum emitters, achieving precise control over narrow-band emissions through modulating carrier injection and electrical biasing. This work extends the boundary of the present understanding of excitonic behaviour within lateral heterojunctions, highlighting the potential for controlled exciton manipulation across 1D interfaces and paving the way for next-generation electro-optical quantum devices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boron nitride ; Carrier density ; Carrier injection ; Charge transfer ; Chemical vapor deposition ; Cryogenic temperature ; Density functional theory ; Electric contacts ; Electric fields ; Emitters ; Excitons ; Field effect transistors ; First principles ; Graphene ; Graphical user interface ; Heterojunctions ; Heterostructures ; Molybdenum compounds ; Photoelectric effect ; Photoluminescence ; Semiconductor devices ; Synergistic effect ; Transition metal compounds ; Trions</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kundu, Baisali</creatorcontrib><creatorcontrib>Mondal, Priyanka</creatorcontrib><creatorcontrib>Tebbe, David</creatorcontrib><creatorcontrib>Hassan, Md Nur</creatorcontrib><creatorcontrib>Chakraborty, Suman Kumar</creatorcontrib><creatorcontrib>Metzelaars, Marvin</creatorcontrib><creatorcontrib>Kögerler, Paul</creatorcontrib><creatorcontrib>Karmakar, Debjani</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><creatorcontrib>Beschoten, Bernd</creatorcontrib><creatorcontrib>Waldecker, Lutz</creatorcontrib><creatorcontrib>Sahoo, Prasana Kumar</creatorcontrib><title>Electrically Controlled Interfacial Charge Transfer Induced Excitons in MoSe2-WSe2 Lateral Heterostructure</title><title>arXiv.org</title><description>Controlling excitons and their transport in two-dimensional (2D) transition metal dichalcogenides (TMDs) heterostructures is central to advancing photonics and electronics on-chip integration. We investigate the controlled generation and manipulation of excitons and their complexes in monolayer (1L) MoSe2-WSe2 lateral heterostructure (LHS), directly grown via water-assisted chemical vapor deposition. Using a field-effect transistor design by incorporating a few-layer graphene back gate, single-layer graphene edge contact and encapsulation with few-layer hexagonal boron nitride, we achieve precise electrical tuning of exciton complexes and their transfer across 1D interfaces. At cryogenic temperatures (4 K), photoluminescence and photocurrent maps reveal the synergistic effect of local electric field and interface phenomena in the modulation of excitons, trions, and free carriers. We observe spatial variations in exciton and trion densities driven by exciton-trion conversion under electrical manipulation. The first-principle density functional theory calculation reveals significant band modification at the lateral interfaces and graphene-TMDs contact region. Furthermore, we demonstrate the versatility of 2D TMDS LHS in hosting and manipulating quantum emitters, achieving precise control over narrow-band emissions through modulating carrier injection and electrical biasing. This work extends the boundary of the present understanding of excitonic behaviour within lateral heterojunctions, highlighting the potential for controlled exciton manipulation across 1D interfaces and paving the way for next-generation electro-optical quantum devices.</description><subject>Boron nitride</subject><subject>Carrier density</subject><subject>Carrier injection</subject><subject>Charge transfer</subject><subject>Chemical vapor deposition</subject><subject>Cryogenic temperature</subject><subject>Density functional theory</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Emitters</subject><subject>Excitons</subject><subject>Field effect transistors</subject><subject>First principles</subject><subject>Graphene</subject><subject>Graphical user interface</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Molybdenum compounds</subject><subject>Photoelectric effect</subject><subject>Photoluminescence</subject><subject>Semiconductor devices</subject><subject>Synergistic effect</subject><subject>Transition metal compounds</subject><subject>Trions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEKwjAURIMgWLR3CLguxKS13ZdKBV1ZcCkh_dWUkOhPAnp7s_AAbmYWbx7MgmRciF3RlJyvSO79zBjj-5pXlcjI3BlQAbWSxnxo62xAZwyM9GgD4CSVloa2D4l3oANK6yfAxMao0qZ7Kx2c9VRbenYX4MU1BT3JpCath9TOB4wqRIQNWU7SeMh_vSbbQze0ffFE94rgw212EW1CN8EaXrOyShf_W30B7ElIcg</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Kundu, Baisali</creator><creator>Mondal, Priyanka</creator><creator>Tebbe, David</creator><creator>Hassan, Md Nur</creator><creator>Chakraborty, Suman Kumar</creator><creator>Metzelaars, Marvin</creator><creator>Kögerler, Paul</creator><creator>Karmakar, Debjani</creator><creator>Stampfer, Christoph</creator><creator>Beschoten, Bernd</creator><creator>Waldecker, Lutz</creator><creator>Sahoo, Prasana Kumar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240718</creationdate><title>Electrically Controlled Interfacial Charge Transfer Induced Excitons in MoSe2-WSe2 Lateral Heterostructure</title><author>Kundu, Baisali ; Mondal, Priyanka ; Tebbe, David ; Hassan, Md Nur ; Chakraborty, Suman Kumar ; Metzelaars, Marvin ; Kögerler, Paul ; Karmakar, Debjani ; Stampfer, Christoph ; Beschoten, Bernd ; Waldecker, Lutz ; Sahoo, Prasana Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30827045553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boron nitride</topic><topic>Carrier density</topic><topic>Carrier injection</topic><topic>Charge transfer</topic><topic>Chemical vapor deposition</topic><topic>Cryogenic temperature</topic><topic>Density functional theory</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Emitters</topic><topic>Excitons</topic><topic>Field effect transistors</topic><topic>First principles</topic><topic>Graphene</topic><topic>Graphical user interface</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Molybdenum compounds</topic><topic>Photoelectric effect</topic><topic>Photoluminescence</topic><topic>Semiconductor devices</topic><topic>Synergistic effect</topic><topic>Transition metal compounds</topic><topic>Trions</topic><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Baisali</creatorcontrib><creatorcontrib>Mondal, Priyanka</creatorcontrib><creatorcontrib>Tebbe, David</creatorcontrib><creatorcontrib>Hassan, Md Nur</creatorcontrib><creatorcontrib>Chakraborty, Suman Kumar</creatorcontrib><creatorcontrib>Metzelaars, Marvin</creatorcontrib><creatorcontrib>Kögerler, Paul</creatorcontrib><creatorcontrib>Karmakar, Debjani</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><creatorcontrib>Beschoten, Bernd</creatorcontrib><creatorcontrib>Waldecker, Lutz</creatorcontrib><creatorcontrib>Sahoo, Prasana Kumar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Baisali</au><au>Mondal, Priyanka</au><au>Tebbe, David</au><au>Hassan, Md Nur</au><au>Chakraborty, Suman Kumar</au><au>Metzelaars, Marvin</au><au>Kögerler, Paul</au><au>Karmakar, Debjani</au><au>Stampfer, Christoph</au><au>Beschoten, Bernd</au><au>Waldecker, Lutz</au><au>Sahoo, Prasana Kumar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Electrically Controlled Interfacial Charge Transfer Induced Excitons in MoSe2-WSe2 Lateral Heterostructure</atitle><jtitle>arXiv.org</jtitle><date>2024-07-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Controlling excitons and their transport in two-dimensional (2D) transition metal dichalcogenides (TMDs) heterostructures is central to advancing photonics and electronics on-chip integration. We investigate the controlled generation and manipulation of excitons and their complexes in monolayer (1L) MoSe2-WSe2 lateral heterostructure (LHS), directly grown via water-assisted chemical vapor deposition. Using a field-effect transistor design by incorporating a few-layer graphene back gate, single-layer graphene edge contact and encapsulation with few-layer hexagonal boron nitride, we achieve precise electrical tuning of exciton complexes and their transfer across 1D interfaces. At cryogenic temperatures (4 K), photoluminescence and photocurrent maps reveal the synergistic effect of local electric field and interface phenomena in the modulation of excitons, trions, and free carriers. We observe spatial variations in exciton and trion densities driven by exciton-trion conversion under electrical manipulation. The first-principle density functional theory calculation reveals significant band modification at the lateral interfaces and graphene-TMDs contact region. Furthermore, we demonstrate the versatility of 2D TMDS LHS in hosting and manipulating quantum emitters, achieving precise control over narrow-band emissions through modulating carrier injection and electrical biasing. This work extends the boundary of the present understanding of excitonic behaviour within lateral heterojunctions, highlighting the potential for controlled exciton manipulation across 1D interfaces and paving the way for next-generation electro-optical quantum devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3082704555 |
source | Free E- Journals |
subjects | Boron nitride Carrier density Carrier injection Charge transfer Chemical vapor deposition Cryogenic temperature Density functional theory Electric contacts Electric fields Emitters Excitons Field effect transistors First principles Graphene Graphical user interface Heterojunctions Heterostructures Molybdenum compounds Photoelectric effect Photoluminescence Semiconductor devices Synergistic effect Transition metal compounds Trions |
title | Electrically Controlled Interfacial Charge Transfer Induced Excitons in MoSe2-WSe2 Lateral Heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Electrically%20Controlled%20Interfacial%20Charge%20Transfer%20Induced%20Excitons%20in%20MoSe2-WSe2%20Lateral%20Heterostructure&rft.jtitle=arXiv.org&rft.au=Kundu,%20Baisali&rft.date=2024-07-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3082704555%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082704555&rft_id=info:pmid/&rfr_iscdi=true |