The power of binary pulsars in testing Gauss-Bonnet gravity

Context. Binary pulsars are a powerful tool for probing strong gravity that still outperform direct gravitational wave observations in a number of ways due to the remarkable accuracy of the pulsar timing. They can constrain the presence of additional charges of the orbiting neutron stars very precis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2024-07, Vol.687, p.A17
Hauptverfasser: Yordanov, Petar Y., Staykov, Kalin V., Yazadjiev, Stoytcho S., Doneva, Daniela D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A17
container_title Astronomy and astrophysics (Berlin)
container_volume 687
creator Yordanov, Petar Y.
Staykov, Kalin V.
Yazadjiev, Stoytcho S.
Doneva, Daniela D.
description Context. Binary pulsars are a powerful tool for probing strong gravity that still outperform direct gravitational wave observations in a number of ways due to the remarkable accuracy of the pulsar timing. They can constrain the presence of additional charges of the orbiting neutron stars very precisely, leading to new channels of energy and angular momentum loss, such as scalar dipole radiation. Aims. In the present paper, we explore in detail the possibility of constraining different classes of scalar-Gauss-Bonnet gravity with binary pulsars. Additionally, we updated the existing constraints related to the observed maximum mass of neutron stars. Methods. Interestingly, depending on the equation of state, the resulting limits on the theory coupling parameters can outperform the constraints coming from binary merger observations by up to a factor of two, even for so-called Einstein-dilaton-Gauss-Bonnet gravity where neutron stars are often underestimated as relevant theory probes. As an additional merit, precise Bayesian methods are compared with approximate approaches, with the latter showing a very good performance despite their simplicity.
doi_str_mv 10.1051/0004-6361/202449679
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082664015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082664015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c157t-af2d6056525da34fc118ee7fdfd5190d8f7cd303fa32b830d6e8982ba36c67af3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKdP4E3A67qTnCRN8UqHTmHgzbwOaZPMjtnWpFX29rZMdnX44eOc_3yE3DK4ZyDZAgBEplCxBQcuRKHy4ozMmECeQS7UOZmdiEtyldJujJxpnJGHzaenXfvrI20DLevGxgPthn2yMdG6ob1Pfd1s6coOKWVPbdP4nm6j_an7wzW5CHaf_M3_nJOPl-fN8jVbv6_elo_rrGIy7zMbuFMgleTSWRShYkx7nwcXnGQFOB3yyiFgsMhLjeCU14XmpUVVqdwGnJO7494utt_DWMjs2iE240mDoLlSApgcKTxSVWxTij6YLtZf4zuGgZksmcmBmRyYkyX8AxRZWWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082664015</pqid></control><display><type>article</type><title>The power of binary pulsars in testing Gauss-Bonnet gravity</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yordanov, Petar Y. ; Staykov, Kalin V. ; Yazadjiev, Stoytcho S. ; Doneva, Daniela D.</creator><creatorcontrib>Yordanov, Petar Y. ; Staykov, Kalin V. ; Yazadjiev, Stoytcho S. ; Doneva, Daniela D.</creatorcontrib><description>Context. Binary pulsars are a powerful tool for probing strong gravity that still outperform direct gravitational wave observations in a number of ways due to the remarkable accuracy of the pulsar timing. They can constrain the presence of additional charges of the orbiting neutron stars very precisely, leading to new channels of energy and angular momentum loss, such as scalar dipole radiation. Aims. In the present paper, we explore in detail the possibility of constraining different classes of scalar-Gauss-Bonnet gravity with binary pulsars. Additionally, we updated the existing constraints related to the observed maximum mass of neutron stars. Methods. Interestingly, depending on the equation of state, the resulting limits on the theory coupling parameters can outperform the constraints coming from binary merger observations by up to a factor of two, even for so-called Einstein-dilaton-Gauss-Bonnet gravity where neutron stars are often underestimated as relevant theory probes. As an additional merit, precise Bayesian methods are compared with approximate approaches, with the latter showing a very good performance despite their simplicity.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202449679</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Angular momentum ; Bayesian analysis ; Binary stars ; Constraints ; Dilatons ; Dipole moments ; Equations of state ; Gravitational waves ; Neutron stars ; Neutrons ; Pulsars</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-07, Vol.687, p.A17</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c157t-af2d6056525da34fc118ee7fdfd5190d8f7cd303fa32b830d6e8982ba36c67af3</cites><orcidid>0000-0002-9247-0792 ; 0000-0001-6519-000X ; 0000-0002-1280-9013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3725,27922,27923</link.rule.ids></links><search><creatorcontrib>Yordanov, Petar Y.</creatorcontrib><creatorcontrib>Staykov, Kalin V.</creatorcontrib><creatorcontrib>Yazadjiev, Stoytcho S.</creatorcontrib><creatorcontrib>Doneva, Daniela D.</creatorcontrib><title>The power of binary pulsars in testing Gauss-Bonnet gravity</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Binary pulsars are a powerful tool for probing strong gravity that still outperform direct gravitational wave observations in a number of ways due to the remarkable accuracy of the pulsar timing. They can constrain the presence of additional charges of the orbiting neutron stars very precisely, leading to new channels of energy and angular momentum loss, such as scalar dipole radiation. Aims. In the present paper, we explore in detail the possibility of constraining different classes of scalar-Gauss-Bonnet gravity with binary pulsars. Additionally, we updated the existing constraints related to the observed maximum mass of neutron stars. Methods. Interestingly, depending on the equation of state, the resulting limits on the theory coupling parameters can outperform the constraints coming from binary merger observations by up to a factor of two, even for so-called Einstein-dilaton-Gauss-Bonnet gravity where neutron stars are often underestimated as relevant theory probes. As an additional merit, precise Bayesian methods are compared with approximate approaches, with the latter showing a very good performance despite their simplicity.</description><subject>Angular momentum</subject><subject>Bayesian analysis</subject><subject>Binary stars</subject><subject>Constraints</subject><subject>Dilatons</subject><subject>Dipole moments</subject><subject>Equations of state</subject><subject>Gravitational waves</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Pulsars</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKdP4E3A67qTnCRN8UqHTmHgzbwOaZPMjtnWpFX29rZMdnX44eOc_3yE3DK4ZyDZAgBEplCxBQcuRKHy4ozMmECeQS7UOZmdiEtyldJujJxpnJGHzaenXfvrI20DLevGxgPthn2yMdG6ob1Pfd1s6coOKWVPbdP4nm6j_an7wzW5CHaf_M3_nJOPl-fN8jVbv6_elo_rrGIy7zMbuFMgleTSWRShYkx7nwcXnGQFOB3yyiFgsMhLjeCU14XmpUVVqdwGnJO7494utt_DWMjs2iE240mDoLlSApgcKTxSVWxTij6YLtZf4zuGgZksmcmBmRyYkyX8AxRZWWc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Yordanov, Petar Y.</creator><creator>Staykov, Kalin V.</creator><creator>Yazadjiev, Stoytcho S.</creator><creator>Doneva, Daniela D.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9247-0792</orcidid><orcidid>https://orcid.org/0000-0001-6519-000X</orcidid><orcidid>https://orcid.org/0000-0002-1280-9013</orcidid></search><sort><creationdate>20240701</creationdate><title>The power of binary pulsars in testing Gauss-Bonnet gravity</title><author>Yordanov, Petar Y. ; Staykov, Kalin V. ; Yazadjiev, Stoytcho S. ; Doneva, Daniela D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c157t-af2d6056525da34fc118ee7fdfd5190d8f7cd303fa32b830d6e8982ba36c67af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular momentum</topic><topic>Bayesian analysis</topic><topic>Binary stars</topic><topic>Constraints</topic><topic>Dilatons</topic><topic>Dipole moments</topic><topic>Equations of state</topic><topic>Gravitational waves</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Pulsars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yordanov, Petar Y.</creatorcontrib><creatorcontrib>Staykov, Kalin V.</creatorcontrib><creatorcontrib>Yazadjiev, Stoytcho S.</creatorcontrib><creatorcontrib>Doneva, Daniela D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yordanov, Petar Y.</au><au>Staykov, Kalin V.</au><au>Yazadjiev, Stoytcho S.</au><au>Doneva, Daniela D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The power of binary pulsars in testing Gauss-Bonnet gravity</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>687</volume><spage>A17</spage><pages>A17-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. Binary pulsars are a powerful tool for probing strong gravity that still outperform direct gravitational wave observations in a number of ways due to the remarkable accuracy of the pulsar timing. They can constrain the presence of additional charges of the orbiting neutron stars very precisely, leading to new channels of energy and angular momentum loss, such as scalar dipole radiation. Aims. In the present paper, we explore in detail the possibility of constraining different classes of scalar-Gauss-Bonnet gravity with binary pulsars. Additionally, we updated the existing constraints related to the observed maximum mass of neutron stars. Methods. Interestingly, depending on the equation of state, the resulting limits on the theory coupling parameters can outperform the constraints coming from binary merger observations by up to a factor of two, even for so-called Einstein-dilaton-Gauss-Bonnet gravity where neutron stars are often underestimated as relevant theory probes. As an additional merit, precise Bayesian methods are compared with approximate approaches, with the latter showing a very good performance despite their simplicity.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202449679</doi><orcidid>https://orcid.org/0000-0002-9247-0792</orcidid><orcidid>https://orcid.org/0000-0001-6519-000X</orcidid><orcidid>https://orcid.org/0000-0002-1280-9013</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-07, Vol.687, p.A17
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_3082664015
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Angular momentum
Bayesian analysis
Binary stars
Constraints
Dilatons
Dipole moments
Equations of state
Gravitational waves
Neutron stars
Neutrons
Pulsars
title The power of binary pulsars in testing Gauss-Bonnet gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20power%20of%20binary%20pulsars%20in%20testing%20Gauss-Bonnet%20gravity&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Yordanov,%20Petar%20Y.&rft.date=2024-07-01&rft.volume=687&rft.spage=A17&rft.pages=A17-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202449679&rft_dat=%3Cproquest_cross%3E3082664015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082664015&rft_id=info:pmid/&rfr_iscdi=true