Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer

The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-07, Vol.14 (27), p.n/a
Hauptverfasser: Chai, Rui‐Lin, Zhao, Qian, Li, Jie, Dong, Zhao‐Jun, Sun, Yu‐Xin, Wang, Xiaocong, Zhang, Penglin, Wu, Wen‐Ting, Li, Guang‐Yue, Zhao, Jin, Li, Sheng‐Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page
container_title Advanced energy materials
container_volume 14
creator Chai, Rui‐Lin
Zhao, Qian
Li, Jie
Dong, Zhao‐Jun
Sun, Yu‐Xin
Wang, Xiaocong
Zhang, Penglin
Wu, Wen‐Ting
Li, Guang‐Yue
Zhao, Jin
Li, Sheng‐Hua
description The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts. This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude.
doi_str_mv 10.1002/aenm.202400871
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082612832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082612832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-b2b2d1734144b0f76896482f43c3521edf242993cf77f862e4006a8df634ae153</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EElXplnUk1il-1UmWVRUeUmmRgAUry3HsypUbFzsBsuMT-Ea-BJeismQ2M9LcM6N7AThHcIwgxJdCNZsxhphCmGfoCAwQQzRlOYXHh5ngUzAKYQ1j0QJBQgbg-aHbKm-cT5bv_Uo1SfnqbNcaFyerZOudFK2wfWiTSgRVJ3GxMF8fn6W1YmVkMpWmTmbO-do04oe7d7bfKH8GTrSwQY1--xA8XZWPs5t0vry-nU3nqcQZRmmFK1yjjFBEaQV1xvKC0RxrSiSZYKRqjSkuCiJ1lumcYRUdMpHXmhEqFJqQIbjY391699Kp0PK163wTX3ICc8wQjsajarxXSe9C8ErzrTcb4XuOIN8lyHcJ8kOCESj2wJuxqv9Hzafl4u6P_QbE-XTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082612832</pqid></control><display><type>article</type><title>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chai, Rui‐Lin ; Zhao, Qian ; Li, Jie ; Dong, Zhao‐Jun ; Sun, Yu‐Xin ; Wang, Xiaocong ; Zhang, Penglin ; Wu, Wen‐Ting ; Li, Guang‐Yue ; Zhao, Jin ; Li, Sheng‐Hua</creator><creatorcontrib>Chai, Rui‐Lin ; Zhao, Qian ; Li, Jie ; Dong, Zhao‐Jun ; Sun, Yu‐Xin ; Wang, Xiaocong ; Zhang, Penglin ; Wu, Wen‐Ting ; Li, Guang‐Yue ; Zhao, Jin ; Li, Sheng‐Hua</creatorcontrib><description>The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts. This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202400871</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Coordination polymers ; Copper ; Density functional theory ; electrocatalysis ; Electrocatalysts ; ellagic acid ; Energy conversion ; Metal air batteries ; Natural products ; Noble metals ; oxygen evolution reaction ; Oxygen evolution reactions ; Platinum ; Production costs ; Rechargeable batteries ; rechargeable Zn‐Air battery ; Zinc-oxygen batteries</subject><ispartof>Advanced energy materials, 2024-07, Vol.14 (27), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2721-b2b2d1734144b0f76896482f43c3521edf242993cf77f862e4006a8df634ae153</cites><orcidid>0000-0001-9208-2119 ; 0000-0002-1733-407X ; 0000-0003-0408-0864 ; 0000-0002-8486-0491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202400871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202400871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chai, Rui‐Lin</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Dong, Zhao‐Jun</creatorcontrib><creatorcontrib>Sun, Yu‐Xin</creatorcontrib><creatorcontrib>Wang, Xiaocong</creatorcontrib><creatorcontrib>Zhang, Penglin</creatorcontrib><creatorcontrib>Wu, Wen‐Ting</creatorcontrib><creatorcontrib>Li, Guang‐Yue</creatorcontrib><creatorcontrib>Zhao, Jin</creatorcontrib><creatorcontrib>Li, Sheng‐Hua</creatorcontrib><title>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</title><title>Advanced energy materials</title><description>The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts. This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude.</description><subject>Catalysts</subject><subject>Coordination polymers</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>ellagic acid</subject><subject>Energy conversion</subject><subject>Metal air batteries</subject><subject>Natural products</subject><subject>Noble metals</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Platinum</subject><subject>Production costs</subject><subject>Rechargeable batteries</subject><subject>rechargeable Zn‐Air battery</subject><subject>Zinc-oxygen batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EElXplnUk1il-1UmWVRUeUmmRgAUry3HsypUbFzsBsuMT-Ea-BJeismQ2M9LcM6N7AThHcIwgxJdCNZsxhphCmGfoCAwQQzRlOYXHh5ngUzAKYQ1j0QJBQgbg-aHbKm-cT5bv_Uo1SfnqbNcaFyerZOudFK2wfWiTSgRVJ3GxMF8fn6W1YmVkMpWmTmbO-do04oe7d7bfKH8GTrSwQY1--xA8XZWPs5t0vry-nU3nqcQZRmmFK1yjjFBEaQV1xvKC0RxrSiSZYKRqjSkuCiJ1lumcYRUdMpHXmhEqFJqQIbjY391699Kp0PK163wTX3ICc8wQjsajarxXSe9C8ErzrTcb4XuOIN8lyHcJ8kOCESj2wJuxqv9Hzafl4u6P_QbE-XTs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Chai, Rui‐Lin</creator><creator>Zhao, Qian</creator><creator>Li, Jie</creator><creator>Dong, Zhao‐Jun</creator><creator>Sun, Yu‐Xin</creator><creator>Wang, Xiaocong</creator><creator>Zhang, Penglin</creator><creator>Wu, Wen‐Ting</creator><creator>Li, Guang‐Yue</creator><creator>Zhao, Jin</creator><creator>Li, Sheng‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9208-2119</orcidid><orcidid>https://orcid.org/0000-0002-1733-407X</orcidid><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid><orcidid>https://orcid.org/0000-0002-8486-0491</orcidid></search><sort><creationdate>20240701</creationdate><title>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</title><author>Chai, Rui‐Lin ; Zhao, Qian ; Li, Jie ; Dong, Zhao‐Jun ; Sun, Yu‐Xin ; Wang, Xiaocong ; Zhang, Penglin ; Wu, Wen‐Ting ; Li, Guang‐Yue ; Zhao, Jin ; Li, Sheng‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-b2b2d1734144b0f76896482f43c3521edf242993cf77f862e4006a8df634ae153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Coordination polymers</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>ellagic acid</topic><topic>Energy conversion</topic><topic>Metal air batteries</topic><topic>Natural products</topic><topic>Noble metals</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Platinum</topic><topic>Production costs</topic><topic>Rechargeable batteries</topic><topic>rechargeable Zn‐Air battery</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Rui‐Lin</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Dong, Zhao‐Jun</creatorcontrib><creatorcontrib>Sun, Yu‐Xin</creatorcontrib><creatorcontrib>Wang, Xiaocong</creatorcontrib><creatorcontrib>Zhang, Penglin</creatorcontrib><creatorcontrib>Wu, Wen‐Ting</creatorcontrib><creatorcontrib>Li, Guang‐Yue</creatorcontrib><creatorcontrib>Zhao, Jin</creatorcontrib><creatorcontrib>Li, Sheng‐Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Rui‐Lin</au><au>Zhao, Qian</au><au>Li, Jie</au><au>Dong, Zhao‐Jun</au><au>Sun, Yu‐Xin</au><au>Wang, Xiaocong</au><au>Zhang, Penglin</au><au>Wu, Wen‐Ting</au><au>Li, Guang‐Yue</au><au>Zhao, Jin</au><au>Li, Sheng‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</atitle><jtitle>Advanced energy materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>27</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts. This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202400871</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9208-2119</orcidid><orcidid>https://orcid.org/0000-0002-1733-407X</orcidid><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid><orcidid>https://orcid.org/0000-0002-8486-0491</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-07, Vol.14 (27), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3082612832
source Wiley Online Library Journals Frontfile Complete
subjects Catalysts
Coordination polymers
Copper
Density functional theory
electrocatalysis
Electrocatalysts
ellagic acid
Energy conversion
Metal air batteries
Natural products
Noble metals
oxygen evolution reaction
Oxygen evolution reactions
Platinum
Production costs
Rechargeable batteries
rechargeable Zn‐Air battery
Zinc-oxygen batteries
title Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Oxygen%20Evolution%20Electrocatalyst%20based%20on%20Ni%E2%80%90Ellagic%20Acid%20Coordination%20Polymer&rft.jtitle=Advanced%20energy%20materials&rft.au=Chai,%20Rui%E2%80%90Lin&rft.date=2024-07-01&rft.volume=14&rft.issue=27&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202400871&rft_dat=%3Cproquest_cross%3E3082612832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082612832&rft_id=info:pmid/&rfr_iscdi=true