Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer
The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effective...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-07, Vol.14 (27), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 27 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Chai, Rui‐Lin Zhao, Qian Li, Jie Dong, Zhao‐Jun Sun, Yu‐Xin Wang, Xiaocong Zhang, Penglin Wu, Wen‐Ting Li, Guang‐Yue Zhao, Jin Li, Sheng‐Hua |
description | The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts.
This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude. |
doi_str_mv | 10.1002/aenm.202400871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082612832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082612832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-b2b2d1734144b0f76896482f43c3521edf242993cf77f862e4006a8df634ae153</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EElXplnUk1il-1UmWVRUeUmmRgAUry3HsypUbFzsBsuMT-Ea-BJeismQ2M9LcM6N7AThHcIwgxJdCNZsxhphCmGfoCAwQQzRlOYXHh5ngUzAKYQ1j0QJBQgbg-aHbKm-cT5bv_Uo1SfnqbNcaFyerZOudFK2wfWiTSgRVJ3GxMF8fn6W1YmVkMpWmTmbO-do04oe7d7bfKH8GTrSwQY1--xA8XZWPs5t0vry-nU3nqcQZRmmFK1yjjFBEaQV1xvKC0RxrSiSZYKRqjSkuCiJ1lumcYRUdMpHXmhEqFJqQIbjY391699Kp0PK163wTX3ICc8wQjsajarxXSe9C8ErzrTcb4XuOIN8lyHcJ8kOCESj2wJuxqv9Hzafl4u6P_QbE-XTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082612832</pqid></control><display><type>article</type><title>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chai, Rui‐Lin ; Zhao, Qian ; Li, Jie ; Dong, Zhao‐Jun ; Sun, Yu‐Xin ; Wang, Xiaocong ; Zhang, Penglin ; Wu, Wen‐Ting ; Li, Guang‐Yue ; Zhao, Jin ; Li, Sheng‐Hua</creator><creatorcontrib>Chai, Rui‐Lin ; Zhao, Qian ; Li, Jie ; Dong, Zhao‐Jun ; Sun, Yu‐Xin ; Wang, Xiaocong ; Zhang, Penglin ; Wu, Wen‐Ting ; Li, Guang‐Yue ; Zhao, Jin ; Li, Sheng‐Hua</creatorcontrib><description>The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts.
This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202400871</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Coordination polymers ; Copper ; Density functional theory ; electrocatalysis ; Electrocatalysts ; ellagic acid ; Energy conversion ; Metal air batteries ; Natural products ; Noble metals ; oxygen evolution reaction ; Oxygen evolution reactions ; Platinum ; Production costs ; Rechargeable batteries ; rechargeable Zn‐Air battery ; Zinc-oxygen batteries</subject><ispartof>Advanced energy materials, 2024-07, Vol.14 (27), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2721-b2b2d1734144b0f76896482f43c3521edf242993cf77f862e4006a8df634ae153</cites><orcidid>0000-0001-9208-2119 ; 0000-0002-1733-407X ; 0000-0003-0408-0864 ; 0000-0002-8486-0491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202400871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202400871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chai, Rui‐Lin</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Dong, Zhao‐Jun</creatorcontrib><creatorcontrib>Sun, Yu‐Xin</creatorcontrib><creatorcontrib>Wang, Xiaocong</creatorcontrib><creatorcontrib>Zhang, Penglin</creatorcontrib><creatorcontrib>Wu, Wen‐Ting</creatorcontrib><creatorcontrib>Li, Guang‐Yue</creatorcontrib><creatorcontrib>Zhao, Jin</creatorcontrib><creatorcontrib>Li, Sheng‐Hua</creatorcontrib><title>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</title><title>Advanced energy materials</title><description>The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts.
This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude.</description><subject>Catalysts</subject><subject>Coordination polymers</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>ellagic acid</subject><subject>Energy conversion</subject><subject>Metal air batteries</subject><subject>Natural products</subject><subject>Noble metals</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Platinum</subject><subject>Production costs</subject><subject>Rechargeable batteries</subject><subject>rechargeable Zn‐Air battery</subject><subject>Zinc-oxygen batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EElXplnUk1il-1UmWVRUeUmmRgAUry3HsypUbFzsBsuMT-Ea-BJeismQ2M9LcM6N7AThHcIwgxJdCNZsxhphCmGfoCAwQQzRlOYXHh5ngUzAKYQ1j0QJBQgbg-aHbKm-cT5bv_Uo1SfnqbNcaFyerZOudFK2wfWiTSgRVJ3GxMF8fn6W1YmVkMpWmTmbO-do04oe7d7bfKH8GTrSwQY1--xA8XZWPs5t0vry-nU3nqcQZRmmFK1yjjFBEaQV1xvKC0RxrSiSZYKRqjSkuCiJ1lumcYRUdMpHXmhEqFJqQIbjY391699Kp0PK163wTX3ICc8wQjsajarxXSe9C8ErzrTcb4XuOIN8lyHcJ8kOCESj2wJuxqv9Hzafl4u6P_QbE-XTs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Chai, Rui‐Lin</creator><creator>Zhao, Qian</creator><creator>Li, Jie</creator><creator>Dong, Zhao‐Jun</creator><creator>Sun, Yu‐Xin</creator><creator>Wang, Xiaocong</creator><creator>Zhang, Penglin</creator><creator>Wu, Wen‐Ting</creator><creator>Li, Guang‐Yue</creator><creator>Zhao, Jin</creator><creator>Li, Sheng‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9208-2119</orcidid><orcidid>https://orcid.org/0000-0002-1733-407X</orcidid><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid><orcidid>https://orcid.org/0000-0002-8486-0491</orcidid></search><sort><creationdate>20240701</creationdate><title>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</title><author>Chai, Rui‐Lin ; Zhao, Qian ; Li, Jie ; Dong, Zhao‐Jun ; Sun, Yu‐Xin ; Wang, Xiaocong ; Zhang, Penglin ; Wu, Wen‐Ting ; Li, Guang‐Yue ; Zhao, Jin ; Li, Sheng‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-b2b2d1734144b0f76896482f43c3521edf242993cf77f862e4006a8df634ae153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Coordination polymers</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>ellagic acid</topic><topic>Energy conversion</topic><topic>Metal air batteries</topic><topic>Natural products</topic><topic>Noble metals</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Platinum</topic><topic>Production costs</topic><topic>Rechargeable batteries</topic><topic>rechargeable Zn‐Air battery</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Rui‐Lin</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Dong, Zhao‐Jun</creatorcontrib><creatorcontrib>Sun, Yu‐Xin</creatorcontrib><creatorcontrib>Wang, Xiaocong</creatorcontrib><creatorcontrib>Zhang, Penglin</creatorcontrib><creatorcontrib>Wu, Wen‐Ting</creatorcontrib><creatorcontrib>Li, Guang‐Yue</creatorcontrib><creatorcontrib>Zhao, Jin</creatorcontrib><creatorcontrib>Li, Sheng‐Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chai, Rui‐Lin</au><au>Zhao, Qian</au><au>Li, Jie</au><au>Dong, Zhao‐Jun</au><au>Sun, Yu‐Xin</au><au>Wang, Xiaocong</au><au>Zhang, Penglin</au><au>Wu, Wen‐Ting</au><au>Li, Guang‐Yue</au><au>Zhao, Jin</au><au>Li, Sheng‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer</atitle><jtitle>Advanced energy materials</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>14</volume><issue>27</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The oxygen evolution reaction (OER) is central to energy conversion technologies, but the high cost and scarcity of commercial noble metal catalysts limit their widespread application. Natural products exhibit great potential in preparing high‐performance electrocatalysts due to their cost‐effectiveness and sustainability. Here, a kind of 1D polymers [M‐EA (M═Co, Cu, Ni)] for oxygen evolution reaction via the complexation of ellagic acid (EA) with metal ions are reported. It is found that Ni‐EA displays a low overpotential (190 mV at 10 mA cm−2) and an ultralow Tafel slope (28 mV dec−1), with a production cost of only 3.6 × 10−2% of IrO2. Density functional theory investigations reveal the electrocatalytic mechanism of the OER. A rechargeable Zn‐Air battery using Ni‐EA+Pt/C as the air electrode shows a lower charging potential and better cycling stability than the IrO2+Pt/C‐based battery. This work provides a train for the development of state‐of‐the‐art OER catalysts.
This work reports a kind of 1D coordination polymers based on nonprecious metals and natural products, which show an impressive overpotential of 190 mV at 10 mA cm−2 and an ultralow Tafel slope of 28 mV dec−1. The inexpensive and sustainable raw materials can reduce the OER catalyst cost by 4 orders of magnitude.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202400871</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9208-2119</orcidid><orcidid>https://orcid.org/0000-0002-1733-407X</orcidid><orcidid>https://orcid.org/0000-0003-0408-0864</orcidid><orcidid>https://orcid.org/0000-0002-8486-0491</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-07, Vol.14 (27), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_3082612832 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysts Coordination polymers Copper Density functional theory electrocatalysis Electrocatalysts ellagic acid Energy conversion Metal air batteries Natural products Noble metals oxygen evolution reaction Oxygen evolution reactions Platinum Production costs Rechargeable batteries rechargeable Zn‐Air battery Zinc-oxygen batteries |
title | Superior Oxygen Evolution Electrocatalyst based on Ni‐Ellagic Acid Coordination Polymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Oxygen%20Evolution%20Electrocatalyst%20based%20on%20Ni%E2%80%90Ellagic%20Acid%20Coordination%20Polymer&rft.jtitle=Advanced%20energy%20materials&rft.au=Chai,%20Rui%E2%80%90Lin&rft.date=2024-07-01&rft.volume=14&rft.issue=27&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202400871&rft_dat=%3Cproquest_cross%3E3082612832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082612832&rft_id=info:pmid/&rfr_iscdi=true |