HFD: Hierarchical feature decoupling for SQL generation from text
Text-to-SQL, a computational linguistics task, seeks to facilitate the conversion of natural language queries into SQL queries. Recent methodologies have leveraged the concept of slot-filling in conjunction with predetermined SQL templates to effectively bridge the semantic gap between natural langu...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2024-01, Vol.28 (4), p.991-1005 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | 4 |
container_start_page | 991 |
container_title | Intelligent data analysis |
container_volume | 28 |
creator | Zhang, Xu Hu, Xiaoyu Liu, Zejie Xiang, Yanzheng Zhou, Deyu |
description | Text-to-SQL, a computational linguistics task, seeks to facilitate the conversion of natural language queries into SQL queries. Recent methodologies have leveraged the concept of slot-filling in conjunction with predetermined SQL templates to effectively bridge the semantic gap between natural language questions and structured database queries, achieving commendable performance by harnessing the power of multi-task learning. However, employing identical features across diverse tasks is an ill-suited practice, fraught with inherent drawbacks. Firstly, based on our observation, there are clear boundaries in the natural language corresponding to SELECT and WHERE clauses. Secondly, the exclusive features integral to each subtask are inadequately emphasized and underutilized, thereby hampering the acquisition of discriminative features for each specific subtask. In an endeavor to rectify these issues, the present work introduces an innovative approach: the hierarchical feature decoupling model for SQL query generation from natural language. This novel approach involves the deliberate separation of features pertaining to subtasks within both SELECT and WHERE clauses, further dissociating these features at the subtask level to foster better model performance. Empirical results derived from experiments conducted on the WikiSQL benchmark dataset reveal the superiority of the proposed approach over several state-of-the-art baseline methods in the context of text-to-SQL query generation. |
doi_str_mv | 10.3233/IDA-230390 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082612099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_IDA-230390</sage_id><sourcerecordid>3082612099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-97ecb6572a8929e030b35d3ed4c633089bb83bf34271f0ff89a0beda4e7c0e9d3</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqxV8Q8CAIq5OP7ibeSmutUBBRwVvIZid1S7tbk13Qf29kBS-eZg7PvAMvIecMrgUX4uZhPs24AKHhgIzYpGCZZFwdph2UymRevB2Tkxg3ACA5yBGZLhfzW7qsMdjg3mtnt9Sj7fqAtELX9vtt3aypbwN9flrRNTYJdnXbUB_aHe3wszslR95uI579zjF5Xdy9zJbZ6vH-YTZdZY4p6DJdoCvzScGt0lwjCCjFpBJYSZcLAUqXpRKlF5IXzIP3SlsosbISCweoKzEmF0PuPrQfPcbObNo-NOmlSec8Zxy0TupqUC60MQb0Zh_qnQ1fhoH5qcikisxQUcKXA452jX9x_8hvUzpjqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082612099</pqid></control><display><type>article</type><title>HFD: Hierarchical feature decoupling for SQL generation from text</title><source>Business Source Complete</source><creator>Zhang, Xu ; Hu, Xiaoyu ; Liu, Zejie ; Xiang, Yanzheng ; Zhou, Deyu</creator><creatorcontrib>Zhang, Xu ; Hu, Xiaoyu ; Liu, Zejie ; Xiang, Yanzheng ; Zhou, Deyu</creatorcontrib><description>Text-to-SQL, a computational linguistics task, seeks to facilitate the conversion of natural language queries into SQL queries. Recent methodologies have leveraged the concept of slot-filling in conjunction with predetermined SQL templates to effectively bridge the semantic gap between natural language questions and structured database queries, achieving commendable performance by harnessing the power of multi-task learning. However, employing identical features across diverse tasks is an ill-suited practice, fraught with inherent drawbacks. Firstly, based on our observation, there are clear boundaries in the natural language corresponding to SELECT and WHERE clauses. Secondly, the exclusive features integral to each subtask are inadequately emphasized and underutilized, thereby hampering the acquisition of discriminative features for each specific subtask. In an endeavor to rectify these issues, the present work introduces an innovative approach: the hierarchical feature decoupling model for SQL query generation from natural language. This novel approach involves the deliberate separation of features pertaining to subtasks within both SELECT and WHERE clauses, further dissociating these features at the subtask level to foster better model performance. Empirical results derived from experiments conducted on the WikiSQL benchmark dataset reveal the superiority of the proposed approach over several state-of-the-art baseline methods in the context of text-to-SQL query generation.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-230390</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Decoupling ; Linguistics ; Natural language ; Natural language processing ; Queries ; Query languages ; Speech recognition</subject><ispartof>Intelligent data analysis, 2024-01, Vol.28 (4), p.991-1005</ispartof><rights>2024 – IOS Press. All rights reserved.</rights><rights>Copyright IOS Press BV 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-97ecb6572a8929e030b35d3ed4c633089bb83bf34271f0ff89a0beda4e7c0e9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Hu, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Zejie</creatorcontrib><creatorcontrib>Xiang, Yanzheng</creatorcontrib><creatorcontrib>Zhou, Deyu</creatorcontrib><title>HFD: Hierarchical feature decoupling for SQL generation from text</title><title>Intelligent data analysis</title><description>Text-to-SQL, a computational linguistics task, seeks to facilitate the conversion of natural language queries into SQL queries. Recent methodologies have leveraged the concept of slot-filling in conjunction with predetermined SQL templates to effectively bridge the semantic gap between natural language questions and structured database queries, achieving commendable performance by harnessing the power of multi-task learning. However, employing identical features across diverse tasks is an ill-suited practice, fraught with inherent drawbacks. Firstly, based on our observation, there are clear boundaries in the natural language corresponding to SELECT and WHERE clauses. Secondly, the exclusive features integral to each subtask are inadequately emphasized and underutilized, thereby hampering the acquisition of discriminative features for each specific subtask. In an endeavor to rectify these issues, the present work introduces an innovative approach: the hierarchical feature decoupling model for SQL query generation from natural language. This novel approach involves the deliberate separation of features pertaining to subtasks within both SELECT and WHERE clauses, further dissociating these features at the subtask level to foster better model performance. Empirical results derived from experiments conducted on the WikiSQL benchmark dataset reveal the superiority of the proposed approach over several state-of-the-art baseline methods in the context of text-to-SQL query generation.</description><subject>Decoupling</subject><subject>Linguistics</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Queries</subject><subject>Query languages</subject><subject>Speech recognition</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtbqxV8Q8CAIq5OP7ibeSmutUBBRwVvIZid1S7tbk13Qf29kBS-eZg7PvAMvIecMrgUX4uZhPs24AKHhgIzYpGCZZFwdph2UymRevB2Tkxg3ACA5yBGZLhfzW7qsMdjg3mtnt9Sj7fqAtELX9vtt3aypbwN9flrRNTYJdnXbUB_aHe3wszslR95uI579zjF5Xdy9zJbZ6vH-YTZdZY4p6DJdoCvzScGt0lwjCCjFpBJYSZcLAUqXpRKlF5IXzIP3SlsosbISCweoKzEmF0PuPrQfPcbObNo-NOmlSec8Zxy0TupqUC60MQb0Zh_qnQ1fhoH5qcikisxQUcKXA452jX9x_8hvUzpjqQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhang, Xu</creator><creator>Hu, Xiaoyu</creator><creator>Liu, Zejie</creator><creator>Xiang, Yanzheng</creator><creator>Zhou, Deyu</creator><general>SAGE Publications</general><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240101</creationdate><title>HFD: Hierarchical feature decoupling for SQL generation from text</title><author>Zhang, Xu ; Hu, Xiaoyu ; Liu, Zejie ; Xiang, Yanzheng ; Zhou, Deyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-97ecb6572a8929e030b35d3ed4c633089bb83bf34271f0ff89a0beda4e7c0e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decoupling</topic><topic>Linguistics</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Queries</topic><topic>Query languages</topic><topic>Speech recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Hu, Xiaoyu</creatorcontrib><creatorcontrib>Liu, Zejie</creatorcontrib><creatorcontrib>Xiang, Yanzheng</creatorcontrib><creatorcontrib>Zhou, Deyu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xu</au><au>Hu, Xiaoyu</au><au>Liu, Zejie</au><au>Xiang, Yanzheng</au><au>Zhou, Deyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HFD: Hierarchical feature decoupling for SQL generation from text</atitle><jtitle>Intelligent data analysis</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>991</spage><epage>1005</epage><pages>991-1005</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>Text-to-SQL, a computational linguistics task, seeks to facilitate the conversion of natural language queries into SQL queries. Recent methodologies have leveraged the concept of slot-filling in conjunction with predetermined SQL templates to effectively bridge the semantic gap between natural language questions and structured database queries, achieving commendable performance by harnessing the power of multi-task learning. However, employing identical features across diverse tasks is an ill-suited practice, fraught with inherent drawbacks. Firstly, based on our observation, there are clear boundaries in the natural language corresponding to SELECT and WHERE clauses. Secondly, the exclusive features integral to each subtask are inadequately emphasized and underutilized, thereby hampering the acquisition of discriminative features for each specific subtask. In an endeavor to rectify these issues, the present work introduces an innovative approach: the hierarchical feature decoupling model for SQL query generation from natural language. This novel approach involves the deliberate separation of features pertaining to subtasks within both SELECT and WHERE clauses, further dissociating these features at the subtask level to foster better model performance. Empirical results derived from experiments conducted on the WikiSQL benchmark dataset reveal the superiority of the proposed approach over several state-of-the-art baseline methods in the context of text-to-SQL query generation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/IDA-230390</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-467X |
ispartof | Intelligent data analysis, 2024-01, Vol.28 (4), p.991-1005 |
issn | 1088-467X 1571-4128 |
language | eng |
recordid | cdi_proquest_journals_3082612099 |
source | Business Source Complete |
subjects | Decoupling Linguistics Natural language Natural language processing Queries Query languages Speech recognition |
title | HFD: Hierarchical feature decoupling for SQL generation from text |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HFD:%20Hierarchical%20feature%20decoupling%20for%20SQL%20generation%20from%20text&rft.jtitle=Intelligent%20data%20analysis&rft.au=Zhang,%20Xu&rft.date=2024-01-01&rft.volume=28&rft.issue=4&rft.spage=991&rft.epage=1005&rft.pages=991-1005&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-230390&rft_dat=%3Cproquest_cross%3E3082612099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082612099&rft_id=info:pmid/&rft_sage_id=10.3233_IDA-230390&rfr_iscdi=true |