Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger
Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation. However, the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchan...
Gespeichert in:
Veröffentlicht in: | Journal of thermal science 2024-07, Vol.33 (4), p.1458-1467 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1467 |
---|---|
container_issue | 4 |
container_start_page | 1458 |
container_title | Journal of thermal science |
container_volume | 33 |
creator | Wang, Yanquan Lu, Yuanwei Wang, Yuanyuan Han, Xinlong Wu, Yuting Gao, Qi |
description | Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation. However, the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchanger. In order to improve the uniformity of flow distribution in the inlet header. This article studies and optimizes the inlet header of a printed circuit board heat exchanger through numerical simulation. The results indicate that when supercritical carbon dioxide flows through the header cavity, eddy currents will be generated, which will increase the uneven distribution of flow rate, while reducing the generation of eddy currents will improve the uniform distribution of flow rate. When the dimensionless factor of the inlet header is 6, the hyperbolic configuration is the optimal structure. We also reduced the eddy current region by adding transition segments, and the results showed that the structure was the best when the dilation angle was 10°, which reduced the non-uniformity by 21% compared to the hyperbolic configuration, providing guidance for engineering practice. |
doi_str_mv | 10.1007/s11630-024-2002-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082609917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082609917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-c47bbb5b0118979e4f11ee6907d563c876071dfb6526dcc1c2f52f7f76aa98f43</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhosoOKcP4F3A6-pJ0ibNpc7pBoMJU_AupGniMra2JilMn96WCl55lUP4vv9w_iS5xnCLAfhdwJhRSIFkKQEgaXaSTLAQNAVK30_7GYCmBDNxnlyEsANgnNFskrSb6DsdO6_2aN1Gd3DfKrqmRo1FcWvQst6biBZGVcYPf5uuNV57F53ujZnyZc8-uuboKoNevKujqdDMed25iB4a5atBjmh-1FtVfxh_mZxZtQ_m6vedJm9P89fZIl2tn5ez-1WqsShiqjNelmVeAsaF4MJkFmNjmABe5YzqgjPguLIlywmrtMaa2JxYbjlTShQ2o9PkZsxtffPZmRDlrul83a-UFArCQAjMewqPlPZNCN5Y2Xp3UP5LYpBDsXIsVvbFyqFYOSST0Qk9O5z0l_y_9AMaXHvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082609917</pqid></control><display><type>article</type><title>Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yanquan ; Lu, Yuanwei ; Wang, Yuanyuan ; Han, Xinlong ; Wu, Yuting ; Gao, Qi</creator><creatorcontrib>Wang, Yanquan ; Lu, Yuanwei ; Wang, Yuanyuan ; Han, Xinlong ; Wu, Yuting ; Gao, Qi</creatorcontrib><description>Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation. However, the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchanger. In order to improve the uniformity of flow distribution in the inlet header. This article studies and optimizes the inlet header of a printed circuit board heat exchanger through numerical simulation. The results indicate that when supercritical carbon dioxide flows through the header cavity, eddy currents will be generated, which will increase the uneven distribution of flow rate, while reducing the generation of eddy currents will improve the uniform distribution of flow rate. When the dimensionless factor of the inlet header is 6, the hyperbolic configuration is the optimal structure. We also reduced the eddy current region by adding transition segments, and the results showed that the structure was the best when the dilation angle was 10°, which reduced the non-uniformity by 21% compared to the hyperbolic configuration, providing guidance for engineering practice.</description><identifier>ISSN: 1003-2169</identifier><identifier>EISSN: 1993-033X</identifier><identifier>DOI: 10.1007/s11630-024-2002-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon dioxide ; Circuit boards ; Classical and Continuum Physics ; Configurations ; Eddy currents ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow distribution ; Flow velocity ; Heat and Mass Transfer ; Heat exchangers ; Nonuniformity ; Physics ; Physics and Astronomy ; Printed circuit boards ; Printed circuits ; Solar heating</subject><ispartof>Journal of thermal science, 2024-07, Vol.33 (4), p.1458-1467</ispartof><rights>Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-c47bbb5b0118979e4f11ee6907d563c876071dfb6526dcc1c2f52f7f76aa98f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11630-024-2002-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11630-024-2002-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Yanquan</creatorcontrib><creatorcontrib>Lu, Yuanwei</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Han, Xinlong</creatorcontrib><creatorcontrib>Wu, Yuting</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><title>Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger</title><title>Journal of thermal science</title><addtitle>J. Therm. Sci</addtitle><description>Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation. However, the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchanger. In order to improve the uniformity of flow distribution in the inlet header. This article studies and optimizes the inlet header of a printed circuit board heat exchanger through numerical simulation. The results indicate that when supercritical carbon dioxide flows through the header cavity, eddy currents will be generated, which will increase the uneven distribution of flow rate, while reducing the generation of eddy currents will improve the uniform distribution of flow rate. When the dimensionless factor of the inlet header is 6, the hyperbolic configuration is the optimal structure. We also reduced the eddy current region by adding transition segments, and the results showed that the structure was the best when the dilation angle was 10°, which reduced the non-uniformity by 21% compared to the hyperbolic configuration, providing guidance for engineering practice.</description><subject>Carbon dioxide</subject><subject>Circuit boards</subject><subject>Classical and Continuum Physics</subject><subject>Configurations</subject><subject>Eddy currents</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow distribution</subject><subject>Flow velocity</subject><subject>Heat and Mass Transfer</subject><subject>Heat exchangers</subject><subject>Nonuniformity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Printed circuit boards</subject><subject>Printed circuits</subject><subject>Solar heating</subject><issn>1003-2169</issn><issn>1993-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKwzAUhosoOKcP4F3A6-pJ0ibNpc7pBoMJU_AupGniMra2JilMn96WCl55lUP4vv9w_iS5xnCLAfhdwJhRSIFkKQEgaXaSTLAQNAVK30_7GYCmBDNxnlyEsANgnNFskrSb6DsdO6_2aN1Gd3DfKrqmRo1FcWvQst6biBZGVcYPf5uuNV57F53ujZnyZc8-uuboKoNevKujqdDMed25iB4a5atBjmh-1FtVfxh_mZxZtQ_m6vedJm9P89fZIl2tn5ez-1WqsShiqjNelmVeAsaF4MJkFmNjmABe5YzqgjPguLIlywmrtMaa2JxYbjlTShQ2o9PkZsxtffPZmRDlrul83a-UFArCQAjMewqPlPZNCN5Y2Xp3UP5LYpBDsXIsVvbFyqFYOSST0Qk9O5z0l_y_9AMaXHvM</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Wang, Yanquan</creator><creator>Lu, Yuanwei</creator><creator>Wang, Yuanyuan</creator><creator>Han, Xinlong</creator><creator>Wu, Yuting</creator><creator>Gao, Qi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger</title><author>Wang, Yanquan ; Lu, Yuanwei ; Wang, Yuanyuan ; Han, Xinlong ; Wu, Yuting ; Gao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-c47bbb5b0118979e4f11ee6907d563c876071dfb6526dcc1c2f52f7f76aa98f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Circuit boards</topic><topic>Classical and Continuum Physics</topic><topic>Configurations</topic><topic>Eddy currents</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow distribution</topic><topic>Flow velocity</topic><topic>Heat and Mass Transfer</topic><topic>Heat exchangers</topic><topic>Nonuniformity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Printed circuit boards</topic><topic>Printed circuits</topic><topic>Solar heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanquan</creatorcontrib><creatorcontrib>Lu, Yuanwei</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Han, Xinlong</creatorcontrib><creatorcontrib>Wu, Yuting</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanquan</au><au>Lu, Yuanwei</au><au>Wang, Yuanyuan</au><au>Han, Xinlong</au><au>Wu, Yuting</au><au>Gao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger</atitle><jtitle>Journal of thermal science</jtitle><stitle>J. Therm. Sci</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>33</volume><issue>4</issue><spage>1458</spage><epage>1467</epage><pages>1458-1467</pages><issn>1003-2169</issn><eissn>1993-033X</eissn><abstract>Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation. However, the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchanger. In order to improve the uniformity of flow distribution in the inlet header. This article studies and optimizes the inlet header of a printed circuit board heat exchanger through numerical simulation. The results indicate that when supercritical carbon dioxide flows through the header cavity, eddy currents will be generated, which will increase the uneven distribution of flow rate, while reducing the generation of eddy currents will improve the uniform distribution of flow rate. When the dimensionless factor of the inlet header is 6, the hyperbolic configuration is the optimal structure. We also reduced the eddy current region by adding transition segments, and the results showed that the structure was the best when the dilation angle was 10°, which reduced the non-uniformity by 21% compared to the hyperbolic configuration, providing guidance for engineering practice.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11630-024-2002-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1003-2169 |
ispartof | Journal of thermal science, 2024-07, Vol.33 (4), p.1458-1467 |
issn | 1003-2169 1993-033X |
language | eng |
recordid | cdi_proquest_journals_3082609917 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Carbon dioxide Circuit boards Classical and Continuum Physics Configurations Eddy currents Engineering Fluid Dynamics Engineering Thermodynamics Flow distribution Flow velocity Heat and Mass Transfer Heat exchangers Nonuniformity Physics Physics and Astronomy Printed circuit boards Printed circuits Solar heating |
title | Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Optimization%20of%20the%20Inlet%20Header%20of%20Supercritical%20Carbon%20Dioxide%20Printed%20Circuit%20Board%20Heat%20Exchanger&rft.jtitle=Journal%20of%20thermal%20science&rft.au=Wang,%20Yanquan&rft.date=2024-07-01&rft.volume=33&rft.issue=4&rft.spage=1458&rft.epage=1467&rft.pages=1458-1467&rft.issn=1003-2169&rft.eissn=1993-033X&rft_id=info:doi/10.1007/s11630-024-2002-4&rft_dat=%3Cproquest_cross%3E3082609917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082609917&rft_id=info:pmid/&rfr_iscdi=true |