Team-wise effective communication in multi-agent reinforcement learning

Effective communication is crucial for the success of multi-agent systems, as it promotes collaboration for attaining joint objectives and enhances competitive efforts towards individual goals. In the context of multi-agent reinforcement learning, determining “whom”, “how” and “what” to communicate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous agents and multi-agent systems 2024-12, Vol.38 (2), Article 36
Hauptverfasser: Yang, Ming, Zhao, Kaiyan, Wang, Yiming, Dong, Renzhi, Du, Yali, Liu, Furui, Zhou, Mingliang, U, Leong Hou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Autonomous agents and multi-agent systems
container_volume 38
creator Yang, Ming
Zhao, Kaiyan
Wang, Yiming
Dong, Renzhi
Du, Yali
Liu, Furui
Zhou, Mingliang
U, Leong Hou
description Effective communication is crucial for the success of multi-agent systems, as it promotes collaboration for attaining joint objectives and enhances competitive efforts towards individual goals. In the context of multi-agent reinforcement learning, determining “whom”, “how” and “what” to communicate are crucial factors for developing effective policies. Therefore, we propose TeamComm, a novel framework for multi-agent communication reinforcement learning. First, it introduces a dynamic team reasoning policy, allowing agents to dynamically form teams and adapt their communication partners based on task requirements and environment states in cooperative or competitive scenarios. Second, TeamComm utilizes heterogeneous communication channels consisting of intra- and inter-team to achieve diverse information flow. Lastly, TeamComm leverages the information bottleneck principle to optimize communication content, guiding agents to convey relevant and valuable information. Through experimental evaluations on three popular environments with seven different scenarios, we empirically demonstrate the superior performance of TeamComm compared to existing methods.
doi_str_mv 10.1007/s10458-024-09665-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082609894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082609894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-2e0e4dbc0a460e01d082c38584acef73d719a8ec6ae1a95e532cd658729ce8053</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jk72aPUrQKBS_1HGI6W1K62ZrsKn57U1fw5mlm4L03jx8h1wxuGUB9lxlIZShwSaHRWlF9QmZM1YLWUsnTsgtTU64EPycXOe8AmOaazchyja6jnyFjhW2LfggfWPm-68YYvBtCH6sQq27cD4G6LcahShhi2yeP3fHao0sxxO0lOWvdPuPV75yT18eH9eKJrl6Wz4v7FfUcYKAcAeXmzYOTGhDYBgz3wigjnce2FpuaNc6g1w6ZaxSWwn6jlal549GAEnNyM-UeUv8-Yh7srh9TLC-tKFkaGtPIouKTyqc-54StPaTQufRlGdgjMDsBswWY_QFmdTGJyZSLOG4x_UX_4_oGQsFugw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082609894</pqid></control><display><type>article</type><title>Team-wise effective communication in multi-agent reinforcement learning</title><source>Springer Journals</source><creator>Yang, Ming ; Zhao, Kaiyan ; Wang, Yiming ; Dong, Renzhi ; Du, Yali ; Liu, Furui ; Zhou, Mingliang ; U, Leong Hou</creator><creatorcontrib>Yang, Ming ; Zhao, Kaiyan ; Wang, Yiming ; Dong, Renzhi ; Du, Yali ; Liu, Furui ; Zhou, Mingliang ; U, Leong Hou</creatorcontrib><description>Effective communication is crucial for the success of multi-agent systems, as it promotes collaboration for attaining joint objectives and enhances competitive efforts towards individual goals. In the context of multi-agent reinforcement learning, determining “whom”, “how” and “what” to communicate are crucial factors for developing effective policies. Therefore, we propose TeamComm, a novel framework for multi-agent communication reinforcement learning. First, it introduces a dynamic team reasoning policy, allowing agents to dynamically form teams and adapt their communication partners based on task requirements and environment states in cooperative or competitive scenarios. Second, TeamComm utilizes heterogeneous communication channels consisting of intra- and inter-team to achieve diverse information flow. Lastly, TeamComm leverages the information bottleneck principle to optimize communication content, guiding agents to convey relevant and valuable information. Through experimental evaluations on three popular environments with seven different scenarios, we empirically demonstrate the superior performance of TeamComm compared to existing methods.</description><identifier>ISSN: 1387-2532</identifier><identifier>EISSN: 1573-7454</identifier><identifier>DOI: 10.1007/s10458-024-09665-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Computer Systems Organization and Communication Networks ; Information flow ; Multiagent systems ; Software Engineering/Programming and Operating Systems ; Teams ; User Interfaces and Human Computer Interaction</subject><ispartof>Autonomous agents and multi-agent systems, 2024-12, Vol.38 (2), Article 36</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-2e0e4dbc0a460e01d082c38584acef73d719a8ec6ae1a95e532cd658729ce8053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10458-024-09665-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10458-024-09665-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhao, Kaiyan</creatorcontrib><creatorcontrib>Wang, Yiming</creatorcontrib><creatorcontrib>Dong, Renzhi</creatorcontrib><creatorcontrib>Du, Yali</creatorcontrib><creatorcontrib>Liu, Furui</creatorcontrib><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>U, Leong Hou</creatorcontrib><title>Team-wise effective communication in multi-agent reinforcement learning</title><title>Autonomous agents and multi-agent systems</title><addtitle>Auton Agent Multi-Agent Syst</addtitle><description>Effective communication is crucial for the success of multi-agent systems, as it promotes collaboration for attaining joint objectives and enhances competitive efforts towards individual goals. In the context of multi-agent reinforcement learning, determining “whom”, “how” and “what” to communicate are crucial factors for developing effective policies. Therefore, we propose TeamComm, a novel framework for multi-agent communication reinforcement learning. First, it introduces a dynamic team reasoning policy, allowing agents to dynamically form teams and adapt their communication partners based on task requirements and environment states in cooperative or competitive scenarios. Second, TeamComm utilizes heterogeneous communication channels consisting of intra- and inter-team to achieve diverse information flow. Lastly, TeamComm leverages the information bottleneck principle to optimize communication content, guiding agents to convey relevant and valuable information. Through experimental evaluations on three popular environments with seven different scenarios, we empirically demonstrate the superior performance of TeamComm compared to existing methods.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Information flow</subject><subject>Multiagent systems</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Teams</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1387-2532</issn><issn>1573-7454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jk72aPUrQKBS_1HGI6W1K62ZrsKn57U1fw5mlm4L03jx8h1wxuGUB9lxlIZShwSaHRWlF9QmZM1YLWUsnTsgtTU64EPycXOe8AmOaazchyja6jnyFjhW2LfggfWPm-68YYvBtCH6sQq27cD4G6LcahShhi2yeP3fHao0sxxO0lOWvdPuPV75yT18eH9eKJrl6Wz4v7FfUcYKAcAeXmzYOTGhDYBgz3wigjnce2FpuaNc6g1w6ZaxSWwn6jlal549GAEnNyM-UeUv8-Yh7srh9TLC-tKFkaGtPIouKTyqc-54StPaTQufRlGdgjMDsBswWY_QFmdTGJyZSLOG4x_UX_4_oGQsFugw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yang, Ming</creator><creator>Zhao, Kaiyan</creator><creator>Wang, Yiming</creator><creator>Dong, Renzhi</creator><creator>Du, Yali</creator><creator>Liu, Furui</creator><creator>Zhou, Mingliang</creator><creator>U, Leong Hou</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Team-wise effective communication in multi-agent reinforcement learning</title><author>Yang, Ming ; Zhao, Kaiyan ; Wang, Yiming ; Dong, Renzhi ; Du, Yali ; Liu, Furui ; Zhou, Mingliang ; U, Leong Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-2e0e4dbc0a460e01d082c38584acef73d719a8ec6ae1a95e532cd658729ce8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Information flow</topic><topic>Multiagent systems</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Teams</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Zhao, Kaiyan</creatorcontrib><creatorcontrib>Wang, Yiming</creatorcontrib><creatorcontrib>Dong, Renzhi</creatorcontrib><creatorcontrib>Du, Yali</creatorcontrib><creatorcontrib>Liu, Furui</creatorcontrib><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>U, Leong Hou</creatorcontrib><collection>CrossRef</collection><jtitle>Autonomous agents and multi-agent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ming</au><au>Zhao, Kaiyan</au><au>Wang, Yiming</au><au>Dong, Renzhi</au><au>Du, Yali</au><au>Liu, Furui</au><au>Zhou, Mingliang</au><au>U, Leong Hou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Team-wise effective communication in multi-agent reinforcement learning</atitle><jtitle>Autonomous agents and multi-agent systems</jtitle><stitle>Auton Agent Multi-Agent Syst</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>38</volume><issue>2</issue><artnum>36</artnum><issn>1387-2532</issn><eissn>1573-7454</eissn><abstract>Effective communication is crucial for the success of multi-agent systems, as it promotes collaboration for attaining joint objectives and enhances competitive efforts towards individual goals. In the context of multi-agent reinforcement learning, determining “whom”, “how” and “what” to communicate are crucial factors for developing effective policies. Therefore, we propose TeamComm, a novel framework for multi-agent communication reinforcement learning. First, it introduces a dynamic team reasoning policy, allowing agents to dynamically form teams and adapt their communication partners based on task requirements and environment states in cooperative or competitive scenarios. Second, TeamComm utilizes heterogeneous communication channels consisting of intra- and inter-team to achieve diverse information flow. Lastly, TeamComm leverages the information bottleneck principle to optimize communication content, guiding agents to convey relevant and valuable information. Through experimental evaluations on three popular environments with seven different scenarios, we empirically demonstrate the superior performance of TeamComm compared to existing methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10458-024-09665-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 1387-2532
ispartof Autonomous agents and multi-agent systems, 2024-12, Vol.38 (2), Article 36
issn 1387-2532
1573-7454
language eng
recordid cdi_proquest_journals_3082609894
source Springer Journals
subjects Artificial Intelligence
Computer Science
Computer Systems Organization and Communication Networks
Information flow
Multiagent systems
Software Engineering/Programming and Operating Systems
Teams
User Interfaces and Human Computer Interaction
title Team-wise effective communication in multi-agent reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Team-wise%20effective%20communication%20in%20multi-agent%20reinforcement%20learning&rft.jtitle=Autonomous%20agents%20and%20multi-agent%20systems&rft.au=Yang,%20Ming&rft.date=2024-12-01&rft.volume=38&rft.issue=2&rft.artnum=36&rft.issn=1387-2532&rft.eissn=1573-7454&rft_id=info:doi/10.1007/s10458-024-09665-6&rft_dat=%3Cproquest_cross%3E3082609894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082609894&rft_id=info:pmid/&rfr_iscdi=true