Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states
In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quan...
Gespeichert in:
Veröffentlicht in: | The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2024-07, Vol.78 (7), Article 97 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | The European physical journal. D, Atomic, molecular, and optical physics |
container_volume | 78 |
creator | Saidi, Hanan El Hadfi, Hanane Slaoui, Abdallah Ahl Laamara, Rachid |
description | In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quantum phase estimation using
s
-spin coherent states superposition. Initially, we delve into the explicit formulation of spin coherent states for a spin
s
=
3
/
2
. Both the quantum Fisher information and the quantum Cramer–Rao bound are meticulously examined. We analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where uncertainty decreases inversely with the total particle number. Moreover, we investigate the phase sensitivity introduced through operators
e
i
ζ
S
z
,
e
i
ζ
S
x
and
e
i
ζ
S
y
, subsequently comparing the resultants findings. In closing, we provide a general analytical expression for the quantum Cramér–Rao bound applied to these three parameter-generating operators, utilizing general
s
-spin coherent states. We remarked that attaining Heisenberg-limit precision requires the careful adjustment of insightful information about the geometry of
s
-spin cat states on the Bloch sphere. Additionally, as the number of
s
-spin increases, the Heisenberg limit decreases, and this reduction is inversely proportional to the
s
-spin number.
Graphical abstract |
doi_str_mv | 10.1140/epjd/s10053-024-00894-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082609561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082609561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-a00d7186ca5adbe523373799d59e7bdc52af8c355fd8e8d7ecb11145bd3057953</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoso-PkbDHiuTpqmTY-LqCsIXvQc0mTazbJNukkqevKv23VFj55mGN7nHXiy7JLCNaUl3OC4NjeRAnCWQ1HmAKIpc3GQndCSlXkFdXP4u1dwnJ3GuAaAgpfVSfa50CuLb9b1ZDspl6aBDJiC3_jearUhI4bOh0E5jUQ5Q_Bd6USWaCO6FkNPNnawiYwBtY3WO5JWwU_9isRpRkcfbdpdfUdiHkfriPYrDOgSiUkljOfZUac2ES9-5ln2en_3crvMn54fHm8XT7kuKKRcAZiaikorrkyLvGCsZnXTGN5g3RrNC9UJzTjvjEBhatQtne3w1jDgdcPZWXa17x2D304Yk1z7Kbj5pWQgigoaXtE5Ve9TOvgYA3ZyDHZQ4UNSkDvbcmdb7m3L2bb8ti3FTIo9GWfC9Rj--v9DvwA6Qon-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082609561</pqid></control><display><type>article</type><title>Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saidi, Hanan ; El Hadfi, Hanane ; Slaoui, Abdallah ; Ahl Laamara, Rachid</creator><creatorcontrib>Saidi, Hanan ; El Hadfi, Hanane ; Slaoui, Abdallah ; Ahl Laamara, Rachid</creatorcontrib><description>In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quantum phase estimation using
s
-spin coherent states superposition. Initially, we delve into the explicit formulation of spin coherent states for a spin
s
=
3
/
2
. Both the quantum Fisher information and the quantum Cramer–Rao bound are meticulously examined. We analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where uncertainty decreases inversely with the total particle number. Moreover, we investigate the phase sensitivity introduced through operators
e
i
ζ
S
z
,
e
i
ζ
S
x
and
e
i
ζ
S
y
, subsequently comparing the resultants findings. In closing, we provide a general analytical expression for the quantum Cramér–Rao bound applied to these three parameter-generating operators, utilizing general
s
-spin coherent states. We remarked that attaining Heisenberg-limit precision requires the careful adjustment of insightful information about the geometry of
s
-spin cat states on the Bloch sphere. Additionally, as the number of
s
-spin increases, the Heisenberg limit decreases, and this reduction is inversely proportional to the
s
-spin number.
Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/s10053-024-00894-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Cramer-Rao bounds ; Fisher information ; Heisenberg theory ; Molecular ; Operators ; Optical and Plasma Physics ; Parameter sensitivity ; Particle spin ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Quantum Physics ; Regular Article - Quantum Information ; Spectroscopy/Spectrometry ; Spintronics ; Uncertainty analysis ; Uncertainty principles</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2024-07, Vol.78 (7), Article 97</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-a00d7186ca5adbe523373799d59e7bdc52af8c355fd8e8d7ecb11145bd3057953</cites><orcidid>0000-0002-5284-3240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00894-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/s10053-024-00894-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saidi, Hanan</creatorcontrib><creatorcontrib>El Hadfi, Hanane</creatorcontrib><creatorcontrib>Slaoui, Abdallah</creatorcontrib><creatorcontrib>Ahl Laamara, Rachid</creatorcontrib><title>Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quantum phase estimation using
s
-spin coherent states superposition. Initially, we delve into the explicit formulation of spin coherent states for a spin
s
=
3
/
2
. Both the quantum Fisher information and the quantum Cramer–Rao bound are meticulously examined. We analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where uncertainty decreases inversely with the total particle number. Moreover, we investigate the phase sensitivity introduced through operators
e
i
ζ
S
z
,
e
i
ζ
S
x
and
e
i
ζ
S
y
, subsequently comparing the resultants findings. In closing, we provide a general analytical expression for the quantum Cramér–Rao bound applied to these three parameter-generating operators, utilizing general
s
-spin coherent states. We remarked that attaining Heisenberg-limit precision requires the careful adjustment of insightful information about the geometry of
s
-spin cat states on the Bloch sphere. Additionally, as the number of
s
-spin increases, the Heisenberg limit decreases, and this reduction is inversely proportional to the
s
-spin number.
Graphical abstract</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Cramer-Rao bounds</subject><subject>Fisher information</subject><subject>Heisenberg theory</subject><subject>Molecular</subject><subject>Operators</subject><subject>Optical and Plasma Physics</subject><subject>Parameter sensitivity</subject><subject>Particle spin</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Regular Article - Quantum Information</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Uncertainty analysis</subject><subject>Uncertainty principles</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoso-PkbDHiuTpqmTY-LqCsIXvQc0mTazbJNukkqevKv23VFj55mGN7nHXiy7JLCNaUl3OC4NjeRAnCWQ1HmAKIpc3GQndCSlXkFdXP4u1dwnJ3GuAaAgpfVSfa50CuLb9b1ZDspl6aBDJiC3_jearUhI4bOh0E5jUQ5Q_Bd6USWaCO6FkNPNnawiYwBtY3WO5JWwU_9isRpRkcfbdpdfUdiHkfriPYrDOgSiUkljOfZUac2ES9-5ln2en_3crvMn54fHm8XT7kuKKRcAZiaikorrkyLvGCsZnXTGN5g3RrNC9UJzTjvjEBhatQtne3w1jDgdcPZWXa17x2D304Yk1z7Kbj5pWQgigoaXtE5Ve9TOvgYA3ZyDHZQ4UNSkDvbcmdb7m3L2bb8ti3FTIo9GWfC9Rj--v9DvwA6Qon-</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Saidi, Hanan</creator><creator>El Hadfi, Hanane</creator><creator>Slaoui, Abdallah</creator><creator>Ahl Laamara, Rachid</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5284-3240</orcidid></search><sort><creationdate>20240701</creationdate><title>Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states</title><author>Saidi, Hanan ; El Hadfi, Hanane ; Slaoui, Abdallah ; Ahl Laamara, Rachid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-a00d7186ca5adbe523373799d59e7bdc52af8c355fd8e8d7ecb11145bd3057953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Cramer-Rao bounds</topic><topic>Fisher information</topic><topic>Heisenberg theory</topic><topic>Molecular</topic><topic>Operators</topic><topic>Optical and Plasma Physics</topic><topic>Parameter sensitivity</topic><topic>Particle spin</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Regular Article - Quantum Information</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Uncertainty analysis</topic><topic>Uncertainty principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saidi, Hanan</creatorcontrib><creatorcontrib>El Hadfi, Hanane</creatorcontrib><creatorcontrib>Slaoui, Abdallah</creatorcontrib><creatorcontrib>Ahl Laamara, Rachid</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saidi, Hanan</au><au>El Hadfi, Hanane</au><au>Slaoui, Abdallah</au><au>Ahl Laamara, Rachid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>78</volume><issue>7</issue><artnum>97</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>In quantum phase estimation, the Heisenberg limit provides the ultimate accuracy over quasi-classical estimation procedures. However, realizing this limit hinges upon both the detection strategy employed for output measurements and the characteristics of the input states. This study delves into quantum phase estimation using
s
-spin coherent states superposition. Initially, we delve into the explicit formulation of spin coherent states for a spin
s
=
3
/
2
. Both the quantum Fisher information and the quantum Cramer–Rao bound are meticulously examined. We analytically show that the ultimate measurement precision of spin cat states approaches the Heisenberg limit, where uncertainty decreases inversely with the total particle number. Moreover, we investigate the phase sensitivity introduced through operators
e
i
ζ
S
z
,
e
i
ζ
S
x
and
e
i
ζ
S
y
, subsequently comparing the resultants findings. In closing, we provide a general analytical expression for the quantum Cramér–Rao bound applied to these three parameter-generating operators, utilizing general
s
-spin coherent states. We remarked that attaining Heisenberg-limit precision requires the careful adjustment of insightful information about the geometry of
s
-spin cat states on the Bloch sphere. Additionally, as the number of
s
-spin increases, the Heisenberg limit decreases, and this reduction is inversely proportional to the
s
-spin number.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/s10053-024-00894-8</doi><orcidid>https://orcid.org/0000-0002-5284-3240</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6060 |
ispartof | The European physical journal. D, Atomic, molecular, and optical physics, 2024-07, Vol.78 (7), Article 97 |
issn | 1434-6060 1434-6079 |
language | eng |
recordid | cdi_proquest_journals_3082609561 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Nonlinear Dynamics and Chaos Theory Atomic Cramer-Rao bounds Fisher information Heisenberg theory Molecular Operators Optical and Plasma Physics Parameter sensitivity Particle spin Physical Chemistry Physics Physics and Astronomy Quantum Information Technology Quantum Physics Regular Article - Quantum Information Spectroscopy/Spectrometry Spintronics Uncertainty analysis Uncertainty principles |
title | Achieving quantum metrological performance and exact Heisenberg limit precision through superposition of s-spin coherent states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20quantum%20metrological%20performance%20and%20exact%20Heisenberg%20limit%20precision%20through%20superposition%20of%20s-spin%20coherent%20states&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Saidi,%20Hanan&rft.date=2024-07-01&rft.volume=78&rft.issue=7&rft.artnum=97&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/s10053-024-00894-8&rft_dat=%3Cproquest_cross%3E3082609561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082609561&rft_id=info:pmid/&rfr_iscdi=true |