AI-Driven Physics-Informed Bio-Silicon Intelligence System: Integrating Hybrid Systems, Biocomputing, Neural Networks, and Machine Learning, for Advanced Neurotechnology

We present the Bio-Silicon Intelligence System (BSIS), an innovative hybrid platform that integrates biological neural networks with silicon-based computing. The BSIS, a Physics-Informed Hybrid Hierarchical Reinforcement Learning State Machine, employs carbon nanotube-coated electrodes to interface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Jorgsson, Vincent, Kumar, Raghav, Mustaf Ahmed, Yung, Maxx, Pattnayak, Aryaman, Sridhar, Sri Pradhyumna, Varma, Vaishnav, Arun Ram Ponnambalam, Weidlich, Georg, Pinotsis, Dimitris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jorgsson, Vincent
Kumar, Raghav
Mustaf Ahmed
Yung, Maxx
Pattnayak, Aryaman
Sridhar, Sri Pradhyumna
Varma, Vaishnav
Arun Ram Ponnambalam
Weidlich, Georg
Pinotsis, Dimitris
description We present the Bio-Silicon Intelligence System (BSIS), an innovative hybrid platform that integrates biological neural networks with silicon-based computing. The BSIS, a Physics-Informed Hybrid Hierarchical Reinforcement Learning State Machine, employs carbon nanotube-coated electrodes to interface rat brains with computational systems, enabling high-fidelity neural interfacing and bidirectional communication through self-organizing systems in both biological and silicon forms. Our system leverages both analogue and digital AI theory, incorporating concepts from computational theory, chaos theory, dynamical systems theory, physics, and quantum mechanics. Additionally, the BSIS replicates the neuronal dynamics typical of intelligent brain tissue, employing nonlinear operations underlying learning and information storage. Neural signals are read through the FreeEEG32 board and BrainFlow software, then features are extracted and mapped to game actions by tracking feature changes in continuous data. Metadata is encoded into both analogue and digital brain stimulation signals at the microvolt level using our proprietary software and hardware. The system employs a dual signaling approach for training the rat brain, incorporating a reward solution and sound as well as human-inaudible distress sounds. This paper details the design, theory, functionality, and technical specifications of the BSIS, highlighting its interdisciplinary approach and advanced technological integration.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3082404190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082404190</sourcerecordid><originalsourceid>FETCH-proquest_journals_30824041903</originalsourceid><addsrcrecordid>eNqNjV1KAzEUhYMgWLR7CPjaQJpMtfpW_-hAFaG-l5jczqRm7q1JpjJLcpdOhy7ApwPn-w7njI2U1lMxL5S6YOOUdlJKdXOrZjM9Yr-LUjxFfwDk73WXvE2ixC3FBhx_8CTWPnhLyEvMEIKvAC3wdZcyNPdDWUWTPVZ82X1G704oTY5jS82-PcIJf4M2mtBH_qH41WODjr8aW3sEvgITcdD6Y75wB9OfuGFDGWyNFKjqrtj51oQE41NesuuX54_HpdhH-m4h5c2O2og92mg5V4UspndS_8_6A_YHX20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082404190</pqid></control><display><type>article</type><title>AI-Driven Physics-Informed Bio-Silicon Intelligence System: Integrating Hybrid Systems, Biocomputing, Neural Networks, and Machine Learning, for Advanced Neurotechnology</title><source>Free E- Journals</source><creator>Jorgsson, Vincent ; Kumar, Raghav ; Mustaf Ahmed ; Yung, Maxx ; Pattnayak, Aryaman ; Sridhar, Sri Pradhyumna ; Varma, Vaishnav ; Arun Ram Ponnambalam ; Weidlich, Georg ; Pinotsis, Dimitris</creator><creatorcontrib>Jorgsson, Vincent ; Kumar, Raghav ; Mustaf Ahmed ; Yung, Maxx ; Pattnayak, Aryaman ; Sridhar, Sri Pradhyumna ; Varma, Vaishnav ; Arun Ram Ponnambalam ; Weidlich, Georg ; Pinotsis, Dimitris</creatorcontrib><description>We present the Bio-Silicon Intelligence System (BSIS), an innovative hybrid platform that integrates biological neural networks with silicon-based computing. The BSIS, a Physics-Informed Hybrid Hierarchical Reinforcement Learning State Machine, employs carbon nanotube-coated electrodes to interface rat brains with computational systems, enabling high-fidelity neural interfacing and bidirectional communication through self-organizing systems in both biological and silicon forms. Our system leverages both analogue and digital AI theory, incorporating concepts from computational theory, chaos theory, dynamical systems theory, physics, and quantum mechanics. Additionally, the BSIS replicates the neuronal dynamics typical of intelligent brain tissue, employing nonlinear operations underlying learning and information storage. Neural signals are read through the FreeEEG32 board and BrainFlow software, then features are extracted and mapped to game actions by tracking feature changes in continuous data. Metadata is encoded into both analogue and digital brain stimulation signals at the microvolt level using our proprietary software and hardware. The system employs a dual signaling approach for training the rat brain, incorporating a reward solution and sound as well as human-inaudible distress sounds. This paper details the design, theory, functionality, and technical specifications of the BSIS, highlighting its interdisciplinary approach and advanced technological integration.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biological computing ; Brain ; Carbon nanotubes ; Chaos theory ; Coated electrodes ; Communications systems ; Dynamic systems theory ; Dynamical systems ; Feature extraction ; Hybrid systems ; Intelligence ; Machine learning ; Neural networks ; Quantum mechanics ; Self organizing systems ; Silicon ; Software ; System theory</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jorgsson, Vincent</creatorcontrib><creatorcontrib>Kumar, Raghav</creatorcontrib><creatorcontrib>Mustaf Ahmed</creatorcontrib><creatorcontrib>Yung, Maxx</creatorcontrib><creatorcontrib>Pattnayak, Aryaman</creatorcontrib><creatorcontrib>Sridhar, Sri Pradhyumna</creatorcontrib><creatorcontrib>Varma, Vaishnav</creatorcontrib><creatorcontrib>Arun Ram Ponnambalam</creatorcontrib><creatorcontrib>Weidlich, Georg</creatorcontrib><creatorcontrib>Pinotsis, Dimitris</creatorcontrib><title>AI-Driven Physics-Informed Bio-Silicon Intelligence System: Integrating Hybrid Systems, Biocomputing, Neural Networks, and Machine Learning, for Advanced Neurotechnology</title><title>arXiv.org</title><description>We present the Bio-Silicon Intelligence System (BSIS), an innovative hybrid platform that integrates biological neural networks with silicon-based computing. The BSIS, a Physics-Informed Hybrid Hierarchical Reinforcement Learning State Machine, employs carbon nanotube-coated electrodes to interface rat brains with computational systems, enabling high-fidelity neural interfacing and bidirectional communication through self-organizing systems in both biological and silicon forms. Our system leverages both analogue and digital AI theory, incorporating concepts from computational theory, chaos theory, dynamical systems theory, physics, and quantum mechanics. Additionally, the BSIS replicates the neuronal dynamics typical of intelligent brain tissue, employing nonlinear operations underlying learning and information storage. Neural signals are read through the FreeEEG32 board and BrainFlow software, then features are extracted and mapped to game actions by tracking feature changes in continuous data. Metadata is encoded into both analogue and digital brain stimulation signals at the microvolt level using our proprietary software and hardware. The system employs a dual signaling approach for training the rat brain, incorporating a reward solution and sound as well as human-inaudible distress sounds. This paper details the design, theory, functionality, and technical specifications of the BSIS, highlighting its interdisciplinary approach and advanced technological integration.</description><subject>Biological computing</subject><subject>Brain</subject><subject>Carbon nanotubes</subject><subject>Chaos theory</subject><subject>Coated electrodes</subject><subject>Communications systems</subject><subject>Dynamic systems theory</subject><subject>Dynamical systems</subject><subject>Feature extraction</subject><subject>Hybrid systems</subject><subject>Intelligence</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Quantum mechanics</subject><subject>Self organizing systems</subject><subject>Silicon</subject><subject>Software</subject><subject>System theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjV1KAzEUhYMgWLR7CPjaQJpMtfpW_-hAFaG-l5jczqRm7q1JpjJLcpdOhy7ApwPn-w7njI2U1lMxL5S6YOOUdlJKdXOrZjM9Yr-LUjxFfwDk73WXvE2ixC3FBhx_8CTWPnhLyEvMEIKvAC3wdZcyNPdDWUWTPVZ82X1G704oTY5jS82-PcIJf4M2mtBH_qH41WODjr8aW3sEvgITcdD6Y75wB9OfuGFDGWyNFKjqrtj51oQE41NesuuX54_HpdhH-m4h5c2O2og92mg5V4UspndS_8_6A_YHX20</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Jorgsson, Vincent</creator><creator>Kumar, Raghav</creator><creator>Mustaf Ahmed</creator><creator>Yung, Maxx</creator><creator>Pattnayak, Aryaman</creator><creator>Sridhar, Sri Pradhyumna</creator><creator>Varma, Vaishnav</creator><creator>Arun Ram Ponnambalam</creator><creator>Weidlich, Georg</creator><creator>Pinotsis, Dimitris</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240731</creationdate><title>AI-Driven Physics-Informed Bio-Silicon Intelligence System: Integrating Hybrid Systems, Biocomputing, Neural Networks, and Machine Learning, for Advanced Neurotechnology</title><author>Jorgsson, Vincent ; Kumar, Raghav ; Mustaf Ahmed ; Yung, Maxx ; Pattnayak, Aryaman ; Sridhar, Sri Pradhyumna ; Varma, Vaishnav ; Arun Ram Ponnambalam ; Weidlich, Georg ; Pinotsis, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30824041903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological computing</topic><topic>Brain</topic><topic>Carbon nanotubes</topic><topic>Chaos theory</topic><topic>Coated electrodes</topic><topic>Communications systems</topic><topic>Dynamic systems theory</topic><topic>Dynamical systems</topic><topic>Feature extraction</topic><topic>Hybrid systems</topic><topic>Intelligence</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Quantum mechanics</topic><topic>Self organizing systems</topic><topic>Silicon</topic><topic>Software</topic><topic>System theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Jorgsson, Vincent</creatorcontrib><creatorcontrib>Kumar, Raghav</creatorcontrib><creatorcontrib>Mustaf Ahmed</creatorcontrib><creatorcontrib>Yung, Maxx</creatorcontrib><creatorcontrib>Pattnayak, Aryaman</creatorcontrib><creatorcontrib>Sridhar, Sri Pradhyumna</creatorcontrib><creatorcontrib>Varma, Vaishnav</creatorcontrib><creatorcontrib>Arun Ram Ponnambalam</creatorcontrib><creatorcontrib>Weidlich, Georg</creatorcontrib><creatorcontrib>Pinotsis, Dimitris</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jorgsson, Vincent</au><au>Kumar, Raghav</au><au>Mustaf Ahmed</au><au>Yung, Maxx</au><au>Pattnayak, Aryaman</au><au>Sridhar, Sri Pradhyumna</au><au>Varma, Vaishnav</au><au>Arun Ram Ponnambalam</au><au>Weidlich, Georg</au><au>Pinotsis, Dimitris</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AI-Driven Physics-Informed Bio-Silicon Intelligence System: Integrating Hybrid Systems, Biocomputing, Neural Networks, and Machine Learning, for Advanced Neurotechnology</atitle><jtitle>arXiv.org</jtitle><date>2024-07-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present the Bio-Silicon Intelligence System (BSIS), an innovative hybrid platform that integrates biological neural networks with silicon-based computing. The BSIS, a Physics-Informed Hybrid Hierarchical Reinforcement Learning State Machine, employs carbon nanotube-coated electrodes to interface rat brains with computational systems, enabling high-fidelity neural interfacing and bidirectional communication through self-organizing systems in both biological and silicon forms. Our system leverages both analogue and digital AI theory, incorporating concepts from computational theory, chaos theory, dynamical systems theory, physics, and quantum mechanics. Additionally, the BSIS replicates the neuronal dynamics typical of intelligent brain tissue, employing nonlinear operations underlying learning and information storage. Neural signals are read through the FreeEEG32 board and BrainFlow software, then features are extracted and mapped to game actions by tracking feature changes in continuous data. Metadata is encoded into both analogue and digital brain stimulation signals at the microvolt level using our proprietary software and hardware. The system employs a dual signaling approach for training the rat brain, incorporating a reward solution and sound as well as human-inaudible distress sounds. This paper details the design, theory, functionality, and technical specifications of the BSIS, highlighting its interdisciplinary approach and advanced technological integration.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3082404190
source Free E- Journals
subjects Biological computing
Brain
Carbon nanotubes
Chaos theory
Coated electrodes
Communications systems
Dynamic systems theory
Dynamical systems
Feature extraction
Hybrid systems
Intelligence
Machine learning
Neural networks
Quantum mechanics
Self organizing systems
Silicon
Software
System theory
title AI-Driven Physics-Informed Bio-Silicon Intelligence System: Integrating Hybrid Systems, Biocomputing, Neural Networks, and Machine Learning, for Advanced Neurotechnology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AI-Driven%20Physics-Informed%20Bio-Silicon%20Intelligence%20System:%20Integrating%20Hybrid%20Systems,%20Biocomputing,%20Neural%20Networks,%20and%20Machine%20Learning,%20for%20Advanced%20Neurotechnology&rft.jtitle=arXiv.org&rft.au=Jorgsson,%20Vincent&rft.date=2024-07-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3082404190%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082404190&rft_id=info:pmid/&rfr_iscdi=true