Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning
Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., oper...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cagatay Isil Hatice Ceylan Koydemir Eryilmaz, Merve de Haan, Kevin Pillar, Nir Mentesoglu, Koray Unal, Aras Firat Rivenson, Yair Chandrasekaran, Sukantha Garner, Omai B Ozcan, Aydogan |
description | Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3082398564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082398564</sourcerecordid><originalsourceid>FETCH-proquest_journals_30823985643</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOC6UJO21rX4OYAIruS1fZHUNKkv7cLba8EDuJrFDDMTkVRqk5SZlAsRh9CmaSqLrcxzFYnb1fAwooUTYwdhQOOMe4DXYLEim2gmggrrgdggjGGSDfJTG7INdKZmH2rfvwFdAw1RD5aQp8dKzDXaQPGPS7E-Hi77c9Kzf40UhnvrR3ZfdVdpKdWuzItM_Vd9APE3Qn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082398564</pqid></control><display><type>article</type><title>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</title><source>Free E- Journals</source><creator>Cagatay Isil ; Hatice Ceylan Koydemir ; Eryilmaz, Merve ; de Haan, Kevin ; Pillar, Nir ; Mentesoglu, Koray ; Unal, Aras Firat ; Rivenson, Yair ; Chandrasekaran, Sukantha ; Garner, Omai B ; Ozcan, Aydogan</creator><creatorcontrib>Cagatay Isil ; Hatice Ceylan Koydemir ; Eryilmaz, Merve ; de Haan, Kevin ; Pillar, Nir ; Mentesoglu, Koray ; Unal, Aras Firat ; Rivenson, Yair ; Chandrasekaran, Sukantha ; Garner, Omai B ; Ozcan, Aydogan</creatorcontrib><description>Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Bacteria ; Coliforms ; E coli ; Environmental monitoring ; Errors ; Image contrast ; Labels ; Machine learning ; Microbiology ; Microscopy ; Staining ; Workflow</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cagatay Isil</creatorcontrib><creatorcontrib>Hatice Ceylan Koydemir</creatorcontrib><creatorcontrib>Eryilmaz, Merve</creatorcontrib><creatorcontrib>de Haan, Kevin</creatorcontrib><creatorcontrib>Pillar, Nir</creatorcontrib><creatorcontrib>Mentesoglu, Koray</creatorcontrib><creatorcontrib>Unal, Aras Firat</creatorcontrib><creatorcontrib>Rivenson, Yair</creatorcontrib><creatorcontrib>Chandrasekaran, Sukantha</creatorcontrib><creatorcontrib>Garner, Omai B</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><title>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</title><title>arXiv.org</title><description>Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</description><subject>Artificial neural networks</subject><subject>Bacteria</subject><subject>Coliforms</subject><subject>E coli</subject><subject>Environmental monitoring</subject><subject>Errors</subject><subject>Image contrast</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Microbiology</subject><subject>Microscopy</subject><subject>Staining</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOC6UJO21rX4OYAIruS1fZHUNKkv7cLba8EDuJrFDDMTkVRqk5SZlAsRh9CmaSqLrcxzFYnb1fAwooUTYwdhQOOMe4DXYLEim2gmggrrgdggjGGSDfJTG7INdKZmH2rfvwFdAw1RD5aQp8dKzDXaQPGPS7E-Hi77c9Kzf40UhnvrR3ZfdVdpKdWuzItM_Vd9APE3Qn0</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Cagatay Isil</creator><creator>Hatice Ceylan Koydemir</creator><creator>Eryilmaz, Merve</creator><creator>de Haan, Kevin</creator><creator>Pillar, Nir</creator><creator>Mentesoglu, Koray</creator><creator>Unal, Aras Firat</creator><creator>Rivenson, Yair</creator><creator>Chandrasekaran, Sukantha</creator><creator>Garner, Omai B</creator><creator>Ozcan, Aydogan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240717</creationdate><title>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</title><author>Cagatay Isil ; Hatice Ceylan Koydemir ; Eryilmaz, Merve ; de Haan, Kevin ; Pillar, Nir ; Mentesoglu, Koray ; Unal, Aras Firat ; Rivenson, Yair ; Chandrasekaran, Sukantha ; Garner, Omai B ; Ozcan, Aydogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30823985643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Bacteria</topic><topic>Coliforms</topic><topic>E coli</topic><topic>Environmental monitoring</topic><topic>Errors</topic><topic>Image contrast</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Microbiology</topic><topic>Microscopy</topic><topic>Staining</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Cagatay Isil</creatorcontrib><creatorcontrib>Hatice Ceylan Koydemir</creatorcontrib><creatorcontrib>Eryilmaz, Merve</creatorcontrib><creatorcontrib>de Haan, Kevin</creatorcontrib><creatorcontrib>Pillar, Nir</creatorcontrib><creatorcontrib>Mentesoglu, Koray</creatorcontrib><creatorcontrib>Unal, Aras Firat</creatorcontrib><creatorcontrib>Rivenson, Yair</creatorcontrib><creatorcontrib>Chandrasekaran, Sukantha</creatorcontrib><creatorcontrib>Garner, Omai B</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagatay Isil</au><au>Hatice Ceylan Koydemir</au><au>Eryilmaz, Merve</au><au>de Haan, Kevin</au><au>Pillar, Nir</au><au>Mentesoglu, Koray</au><au>Unal, Aras Firat</au><au>Rivenson, Yair</au><au>Chandrasekaran, Sukantha</au><au>Garner, Omai B</au><au>Ozcan, Aydogan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3082398564 |
source | Free E- Journals |
subjects | Artificial neural networks Bacteria Coliforms E coli Environmental monitoring Errors Image contrast Labels Machine learning Microbiology Microscopy Staining Workflow |
title | Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Virtual%20Gram%20staining%20of%20label-free%20bacteria%20using%20darkfield%20microscopy%20and%20deep%20learning&rft.jtitle=arXiv.org&rft.au=Cagatay%20Isil&rft.date=2024-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3082398564%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082398564&rft_id=info:pmid/&rfr_iscdi=true |