Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning

Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Cagatay Isil, Hatice Ceylan Koydemir, Eryilmaz, Merve, de Haan, Kevin, Pillar, Nir, Mentesoglu, Koray, Unal, Aras Firat, Rivenson, Yair, Chandrasekaran, Sukantha, Garner, Omai B, Ozcan, Aydogan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cagatay Isil
Hatice Ceylan Koydemir
Eryilmaz, Merve
de Haan, Kevin
Pillar, Nir
Mentesoglu, Koray
Unal, Aras Firat
Rivenson, Yair
Chandrasekaran, Sukantha
Garner, Omai B
Ozcan, Aydogan
description Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3082398564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082398564</sourcerecordid><originalsourceid>FETCH-proquest_journals_30823985643</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOC6UJO21rX4OYAIruS1fZHUNKkv7cLba8EDuJrFDDMTkVRqk5SZlAsRh9CmaSqLrcxzFYnb1fAwooUTYwdhQOOMe4DXYLEim2gmggrrgdggjGGSDfJTG7INdKZmH2rfvwFdAw1RD5aQp8dKzDXaQPGPS7E-Hi77c9Kzf40UhnvrR3ZfdVdpKdWuzItM_Vd9APE3Qn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082398564</pqid></control><display><type>article</type><title>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</title><source>Free E- Journals</source><creator>Cagatay Isil ; Hatice Ceylan Koydemir ; Eryilmaz, Merve ; de Haan, Kevin ; Pillar, Nir ; Mentesoglu, Koray ; Unal, Aras Firat ; Rivenson, Yair ; Chandrasekaran, Sukantha ; Garner, Omai B ; Ozcan, Aydogan</creator><creatorcontrib>Cagatay Isil ; Hatice Ceylan Koydemir ; Eryilmaz, Merve ; de Haan, Kevin ; Pillar, Nir ; Mentesoglu, Koray ; Unal, Aras Firat ; Rivenson, Yair ; Chandrasekaran, Sukantha ; Garner, Omai B ; Ozcan, Aydogan</creatorcontrib><description>Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Bacteria ; Coliforms ; E coli ; Environmental monitoring ; Errors ; Image contrast ; Labels ; Machine learning ; Microbiology ; Microscopy ; Staining ; Workflow</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cagatay Isil</creatorcontrib><creatorcontrib>Hatice Ceylan Koydemir</creatorcontrib><creatorcontrib>Eryilmaz, Merve</creatorcontrib><creatorcontrib>de Haan, Kevin</creatorcontrib><creatorcontrib>Pillar, Nir</creatorcontrib><creatorcontrib>Mentesoglu, Koray</creatorcontrib><creatorcontrib>Unal, Aras Firat</creatorcontrib><creatorcontrib>Rivenson, Yair</creatorcontrib><creatorcontrib>Chandrasekaran, Sukantha</creatorcontrib><creatorcontrib>Garner, Omai B</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><title>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</title><title>arXiv.org</title><description>Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</description><subject>Artificial neural networks</subject><subject>Bacteria</subject><subject>Coliforms</subject><subject>E coli</subject><subject>Environmental monitoring</subject><subject>Errors</subject><subject>Image contrast</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Microbiology</subject><subject>Microscopy</subject><subject>Staining</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOC6UJO21rX4OYAIruS1fZHUNKkv7cLba8EDuJrFDDMTkVRqk5SZlAsRh9CmaSqLrcxzFYnb1fAwooUTYwdhQOOMe4DXYLEim2gmggrrgdggjGGSDfJTG7INdKZmH2rfvwFdAw1RD5aQp8dKzDXaQPGPS7E-Hi77c9Kzf40UhnvrR3ZfdVdpKdWuzItM_Vd9APE3Qn0</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Cagatay Isil</creator><creator>Hatice Ceylan Koydemir</creator><creator>Eryilmaz, Merve</creator><creator>de Haan, Kevin</creator><creator>Pillar, Nir</creator><creator>Mentesoglu, Koray</creator><creator>Unal, Aras Firat</creator><creator>Rivenson, Yair</creator><creator>Chandrasekaran, Sukantha</creator><creator>Garner, Omai B</creator><creator>Ozcan, Aydogan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240717</creationdate><title>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</title><author>Cagatay Isil ; Hatice Ceylan Koydemir ; Eryilmaz, Merve ; de Haan, Kevin ; Pillar, Nir ; Mentesoglu, Koray ; Unal, Aras Firat ; Rivenson, Yair ; Chandrasekaran, Sukantha ; Garner, Omai B ; Ozcan, Aydogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30823985643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Bacteria</topic><topic>Coliforms</topic><topic>E coli</topic><topic>Environmental monitoring</topic><topic>Errors</topic><topic>Image contrast</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Microbiology</topic><topic>Microscopy</topic><topic>Staining</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Cagatay Isil</creatorcontrib><creatorcontrib>Hatice Ceylan Koydemir</creatorcontrib><creatorcontrib>Eryilmaz, Merve</creatorcontrib><creatorcontrib>de Haan, Kevin</creatorcontrib><creatorcontrib>Pillar, Nir</creatorcontrib><creatorcontrib>Mentesoglu, Koray</creatorcontrib><creatorcontrib>Unal, Aras Firat</creatorcontrib><creatorcontrib>Rivenson, Yair</creatorcontrib><creatorcontrib>Chandrasekaran, Sukantha</creatorcontrib><creatorcontrib>Garner, Omai B</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cagatay Isil</au><au>Hatice Ceylan Koydemir</au><au>Eryilmaz, Merve</au><au>de Haan, Kevin</au><au>Pillar, Nir</au><au>Mentesoglu, Koray</au><au>Unal, Aras Firat</au><au>Rivenson, Yair</au><au>Chandrasekaran, Sukantha</au><au>Garner, Omai B</au><au>Ozcan, Aydogan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gram staining has been one of the most frequently used staining protocols in microbiology for over a century, utilized across various fields, including diagnostics, food safety, and environmental monitoring. Its manual procedures make it vulnerable to staining errors and artifacts due to, e.g., operator inexperience and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained deep neural network that digitally transforms darkfield images of unstained bacteria into their Gram-stained equivalents matching brightfield image contrast. After a one-time training effort, the virtual Gram staining model processes an axial stack of darkfield microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of the virtual Gram staining workflow on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the virtual Gram staining model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacteria staining framework effectively bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3082398564
source Free E- Journals
subjects Artificial neural networks
Bacteria
Coliforms
E coli
Environmental monitoring
Errors
Image contrast
Labels
Machine learning
Microbiology
Microscopy
Staining
Workflow
title Virtual Gram staining of label-free bacteria using darkfield microscopy and deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Virtual%20Gram%20staining%20of%20label-free%20bacteria%20using%20darkfield%20microscopy%20and%20deep%20learning&rft.jtitle=arXiv.org&rft.au=Cagatay%20Isil&rft.date=2024-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3082398564%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082398564&rft_id=info:pmid/&rfr_iscdi=true