Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning
The linguistic capabilities of Multimodal Large Language Models (MLLMs) are critical for their effective application across diverse tasks. This study aims to evaluate the performance of MLLMs on the VALSE benchmark, focusing on the efficacy of few-shot In-Context Learning (ICL), and Chain-of-Thought...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dogan, Mustafa Kesen, Ilker Iacer Calixto Erdem, Aykut Erdem, Erkut |
description | The linguistic capabilities of Multimodal Large Language Models (MLLMs) are critical for their effective application across diverse tasks. This study aims to evaluate the performance of MLLMs on the VALSE benchmark, focusing on the efficacy of few-shot In-Context Learning (ICL), and Chain-of-Thought (CoT) prompting. We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets. The experimental results reveal that ICL and CoT prompting significantly boost model performance, particularly in tasks requiring complex reasoning and contextual understanding. Models pretrained on captioning datasets show superior zero-shot performance, while those trained on interleaved image-text data benefit from few-shot learning. Our findings provide valuable insights into optimizing MLLMs for better grounding of language in visual contexts, highlighting the importance of the composition of pretraining data and the potential of few-shot learning strategies to improve the reasoning abilities of MLLMs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3082397876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082397876</sourcerecordid><originalsourceid>FETCH-proquest_journals_30823978763</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_cMF1ISb24bq0uEhXiluJmtpbYlKbRH_fIn6AmzkwZ5gZiRjnm6TYMrYgsXM9pZRlOUtTHpFT9ZI6SI_mDmKKgM7jFUo5yAtq9Kgc2BaaoD0-7E1qEKJxgAZ8p0Ao89W1eieHzvqpkKOZblZk3krtVPzjkqzr6ljuk2G0z6CcP_c2jGZSZ04Lxnd5kWf8v9UHvthAew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082397876</pqid></control><display><type>article</type><title>Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning</title><source>Free E- Journals</source><creator>Dogan, Mustafa ; Kesen, Ilker ; Iacer Calixto ; Erdem, Aykut ; Erdem, Erkut</creator><creatorcontrib>Dogan, Mustafa ; Kesen, Ilker ; Iacer Calixto ; Erdem, Aykut ; Erdem, Erkut</creatorcontrib><description>The linguistic capabilities of Multimodal Large Language Models (MLLMs) are critical for their effective application across diverse tasks. This study aims to evaluate the performance of MLLMs on the VALSE benchmark, focusing on the efficacy of few-shot In-Context Learning (ICL), and Chain-of-Thought (CoT) prompting. We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets. The experimental results reveal that ICL and CoT prompting significantly boost model performance, particularly in tasks requiring complex reasoning and contextual understanding. Models pretrained on captioning datasets show superior zero-shot performance, while those trained on interleaved image-text data benefit from few-shot learning. Our findings provide valuable insights into optimizing MLLMs for better grounding of language in visual contexts, highlighting the importance of the composition of pretraining data and the potential of few-shot learning strategies to improve the reasoning abilities of MLLMs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Effectiveness ; Large language models ; Linguistics ; Performance evaluation ; Prompt engineering ; Reasoning ; Task complexity</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dogan, Mustafa</creatorcontrib><creatorcontrib>Kesen, Ilker</creatorcontrib><creatorcontrib>Iacer Calixto</creatorcontrib><creatorcontrib>Erdem, Aykut</creatorcontrib><creatorcontrib>Erdem, Erkut</creatorcontrib><title>Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning</title><title>arXiv.org</title><description>The linguistic capabilities of Multimodal Large Language Models (MLLMs) are critical for their effective application across diverse tasks. This study aims to evaluate the performance of MLLMs on the VALSE benchmark, focusing on the efficacy of few-shot In-Context Learning (ICL), and Chain-of-Thought (CoT) prompting. We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets. The experimental results reveal that ICL and CoT prompting significantly boost model performance, particularly in tasks requiring complex reasoning and contextual understanding. Models pretrained on captioning datasets show superior zero-shot performance, while those trained on interleaved image-text data benefit from few-shot learning. Our findings provide valuable insights into optimizing MLLMs for better grounding of language in visual contexts, highlighting the importance of the composition of pretraining data and the potential of few-shot learning strategies to improve the reasoning abilities of MLLMs.</description><subject>Datasets</subject><subject>Effectiveness</subject><subject>Large language models</subject><subject>Linguistics</subject><subject>Performance evaluation</subject><subject>Prompt engineering</subject><subject>Reasoning</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_cMF1ISb24bq0uEhXiluJmtpbYlKbRH_fIn6AmzkwZ5gZiRjnm6TYMrYgsXM9pZRlOUtTHpFT9ZI6SI_mDmKKgM7jFUo5yAtq9Kgc2BaaoD0-7E1qEKJxgAZ8p0Ao89W1eieHzvqpkKOZblZk3krtVPzjkqzr6ljuk2G0z6CcP_c2jGZSZ04Lxnd5kWf8v9UHvthAew</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Dogan, Mustafa</creator><creator>Kesen, Ilker</creator><creator>Iacer Calixto</creator><creator>Erdem, Aykut</creator><creator>Erdem, Erkut</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240717</creationdate><title>Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning</title><author>Dogan, Mustafa ; Kesen, Ilker ; Iacer Calixto ; Erdem, Aykut ; Erdem, Erkut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30823978763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Effectiveness</topic><topic>Large language models</topic><topic>Linguistics</topic><topic>Performance evaluation</topic><topic>Prompt engineering</topic><topic>Reasoning</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Dogan, Mustafa</creatorcontrib><creatorcontrib>Kesen, Ilker</creatorcontrib><creatorcontrib>Iacer Calixto</creatorcontrib><creatorcontrib>Erdem, Aykut</creatorcontrib><creatorcontrib>Erdem, Erkut</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dogan, Mustafa</au><au>Kesen, Ilker</au><au>Iacer Calixto</au><au>Erdem, Aykut</au><au>Erdem, Erkut</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The linguistic capabilities of Multimodal Large Language Models (MLLMs) are critical for their effective application across diverse tasks. This study aims to evaluate the performance of MLLMs on the VALSE benchmark, focusing on the efficacy of few-shot In-Context Learning (ICL), and Chain-of-Thought (CoT) prompting. We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets. The experimental results reveal that ICL and CoT prompting significantly boost model performance, particularly in tasks requiring complex reasoning and contextual understanding. Models pretrained on captioning datasets show superior zero-shot performance, while those trained on interleaved image-text data benefit from few-shot learning. Our findings provide valuable insights into optimizing MLLMs for better grounding of language in visual contexts, highlighting the importance of the composition of pretraining data and the potential of few-shot learning strategies to improve the reasoning abilities of MLLMs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3082397876 |
source | Free E- Journals |
subjects | Datasets Effectiveness Large language models Linguistics Performance evaluation Prompt engineering Reasoning Task complexity |
title | Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Evaluating%20Linguistic%20Capabilities%20of%20Multimodal%20LLMs%20in%20the%20Lens%20of%20Few-Shot%20Learning&rft.jtitle=arXiv.org&rft.au=Dogan,%20Mustafa&rft.date=2024-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3082397876%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082397876&rft_id=info:pmid/&rfr_iscdi=true |