Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium
The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The syst...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mathematics 2024-08, Vol.147 (1), Article 10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of engineering mathematics |
container_volume | 147 |
creator | Hajool, Shahizlan Shakir Harfash, Akil J. |
description | The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation. |
doi_str_mv | 10.1007/s10665-024-10369-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082286947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082286947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4e388175ae8402fe7fdd4be136e5464cb07339c1bf253ca123627caaa6a3efa13</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Fz9FJJk3aoyx-4YoXPYe0TdYs26YmLdJ_b7WCNy8zh3ned-Ah5ILBFQNQ14mBlDkFLigDlCUtD8iK5QopV4CHZAXAOYUC8ZicpLQDgLIQfEWens22s0N4n5oYmqkzra8z36XBVH7vhykLLnP70TfzDJ_zJTNZ5RufehuTzfoQw5iy1jZ-bM_IkTP7ZM9_9yl5u7t9XT_Qzcv94_pmQ2sOMFBhsSiYyo0tBHBnlWsaUVmG0uZCiroChVjWrHI8x9owjpKr2hgjDVpnGJ6Sy6W3j-FjtGnQuzDGbn6pEQrOC1kKNVN8oeoYUorW6T761sRJM9Df0vQiTc_S9I80Xc4hXEJphrutjX_V_6S-AFbScAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082286947</pqid></control><display><type>article</type><title>Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hajool, Shahizlan Shakir ; Harfash, Akil J.</creator><creatorcontrib>Hajool, Shahizlan Shakir ; Harfash, Akil J.</creatorcontrib><description>The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-024-10369-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Chebyshev approximation ; Computational Mathematics and Numerical Analysis ; Conducting fluids ; Eigenvalues ; Flow stability ; Fluid flow ; Hartmann number ; Incompressible flow ; Incompressible fluids ; Interaction parameters ; Laminar flow ; Magnetohydrodynamic stability ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Parameter sensitivity ; Porous media ; Porous media flow ; Sensitivity enhancement ; Spectral sensitivity ; Theoretical and Applied Mechanics ; Velocity distribution</subject><ispartof>Journal of engineering mathematics, 2024-08, Vol.147 (1), Article 10</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4e388175ae8402fe7fdd4be136e5464cb07339c1bf253ca123627caaa6a3efa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-024-10369-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-024-10369-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Hajool, Shahizlan Shakir</creatorcontrib><creatorcontrib>Harfash, Akil J.</creatorcontrib><title>Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.</description><subject>Applications of Mathematics</subject><subject>Chebyshev approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conducting fluids</subject><subject>Eigenvalues</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Hartmann number</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Interaction parameters</subject><subject>Laminar flow</subject><subject>Magnetohydrodynamic stability</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter sensitivity</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Sensitivity enhancement</subject><subject>Spectral sensitivity</subject><subject>Theoretical and Applied Mechanics</subject><subject>Velocity distribution</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Fz9FJJk3aoyx-4YoXPYe0TdYs26YmLdJ_b7WCNy8zh3ned-Ah5ILBFQNQ14mBlDkFLigDlCUtD8iK5QopV4CHZAXAOYUC8ZicpLQDgLIQfEWens22s0N4n5oYmqkzra8z36XBVH7vhykLLnP70TfzDJ_zJTNZ5RufehuTzfoQw5iy1jZ-bM_IkTP7ZM9_9yl5u7t9XT_Qzcv94_pmQ2sOMFBhsSiYyo0tBHBnlWsaUVmG0uZCiroChVjWrHI8x9owjpKr2hgjDVpnGJ6Sy6W3j-FjtGnQuzDGbn6pEQrOC1kKNVN8oeoYUorW6T761sRJM9Df0vQiTc_S9I80Xc4hXEJphrutjX_V_6S-AFbScAg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Hajool, Shahizlan Shakir</creator><creator>Harfash, Akil J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium</title><author>Hajool, Shahizlan Shakir ; Harfash, Akil J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4e388175ae8402fe7fdd4be136e5464cb07339c1bf253ca123627caaa6a3efa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Chebyshev approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conducting fluids</topic><topic>Eigenvalues</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Hartmann number</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Interaction parameters</topic><topic>Laminar flow</topic><topic>Magnetohydrodynamic stability</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter sensitivity</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Sensitivity enhancement</topic><topic>Spectral sensitivity</topic><topic>Theoretical and Applied Mechanics</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajool, Shahizlan Shakir</creatorcontrib><creatorcontrib>Harfash, Akil J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajool, Shahizlan Shakir</au><au>Harfash, Akil J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>147</volume><issue>1</issue><artnum>10</artnum><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>The investigation focuses on the hydrodynamic instability of a fully developed pressure-driven flow within a bidisperse porous medium containing an electrically conducting fluid. The study explores this phenomenon using the Darcy theory for micropores and the Brinkman theory for macropores. The system involves an incompressible fluid under isothermal conditions confined in an infinite channel with a constant pressure gradient along its length. The fluid moves in a laminar fashion along the pressure gradient, resulting in a time-independent parabolic velocity profile. Two Chebyshev collocation techniques are employed to address the eigenvalue system, producing numerical results for evaluating instability. Our findings indicate that enhancing the values of the Hartmann numbers, permeability ratio, porous parameter, and interaction parameter contributes to an enhanced stability of the system. The spectral behavior of eigenvalues in the Orr-Sommerfeld problem for Poiseuille flow demonstrates noteworthy sensitivity, influenced by various factors, including the mathematical characteristics of the problem and the specific numerical techniques employed for approximation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-024-10369-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0833 |
ispartof | Journal of engineering mathematics, 2024-08, Vol.147 (1), Article 10 |
issn | 0022-0833 1573-2703 |
language | eng |
recordid | cdi_proquest_journals_3082286947 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Chebyshev approximation Computational Mathematics and Numerical Analysis Conducting fluids Eigenvalues Flow stability Fluid flow Hartmann number Incompressible flow Incompressible fluids Interaction parameters Laminar flow Magnetohydrodynamic stability Mathematical analysis Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Parameter sensitivity Porous media Porous media flow Sensitivity enhancement Spectral sensitivity Theoretical and Applied Mechanics Velocity distribution |
title | Magnetohydrodynamic instability of fluid flow in a bidisperse porous medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamic%20instability%20of%20fluid%20flow%20in%20a%20bidisperse%20porous%20medium&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Hajool,%20Shahizlan%20Shakir&rft.date=2024-08-01&rft.volume=147&rft.issue=1&rft.artnum=10&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-024-10369-9&rft_dat=%3Cproquest_cross%3E3082286947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082286947&rft_id=info:pmid/&rfr_iscdi=true |