Simple Shear and Applied Piola-Kirchhoff Shear Stress
The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors tha...
Gespeichert in:
Veröffentlicht in: | Journal of elasticity 2024-07, Vol.155 (1-5), p.159-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 1-5 |
container_start_page | 159 |
container_title | Journal of elasticity |
container_volume | 155 |
creator | Horgan, C. O. Murphy, J. G. |
description | The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress. |
doi_str_mv | 10.1007/s10659-022-09924-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082286673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082286673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</originalsourceid><addsrcrecordid>eNp9kEtLw0AURgdRsFb_gKuA69F777yXpfjCgkJ1PUyTiU1pmzjTLvz3pqbgztXdnO9cOIxdI9wigLnLCFo5DkQcnCPJ8YSNUBnBSVs8ZSMQRnKhhDpnFzmvAMBZCSOm5s2mW8divowhFWFbFZOuWzexKt6adh34S5PK5bKt6yMx36WY8yU7q8M6x6vjHbOPh_v36ROfvT4-TyczXgp0O66ELSno6HSUTgqtyVZYBuEqQRYM6VCZGgMpI0OJsjJoY00L0riIoCSKMbsZvF1qv_Yx7_yq3adt_9ILsERWayN6igaqTG3OKda-S80mpG-P4A95_JDH93n8bx5_UIthlHt4-xnTn_qf1Q_zaGVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082286673</pqid></control><display><type>article</type><title>Simple Shear and Applied Piola-Kirchhoff Shear Stress</title><source>SpringerNature Journals</source><creator>Horgan, C. O. ; Murphy, J. G.</creator><creatorcontrib>Horgan, C. O. ; Murphy, J. G.</creatorcontrib><description>The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-022-09924-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomechanics ; Classical and Continuum Physics ; Classical Mechanics ; Deformation analysis ; Deformation effects ; Engineering ; Invariants ; Materials Science ; Mathematical Applications in the Physical Sciences ; Plane strain ; Shear stress ; Strain analysis ; Tensors ; Theoretical and Applied Mechanics</subject><ispartof>Journal of elasticity, 2024-07, Vol.155 (1-5), p.159-170</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</citedby><cites>FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-022-09924-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-022-09924-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Horgan, C. O.</creatorcontrib><creatorcontrib>Murphy, J. G.</creatorcontrib><title>Simple Shear and Applied Piola-Kirchhoff Shear Stress</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress.</description><subject>Biomechanics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Engineering</subject><subject>Invariants</subject><subject>Materials Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Plane strain</subject><subject>Shear stress</subject><subject>Strain analysis</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AURgdRsFb_gKuA69F777yXpfjCgkJ1PUyTiU1pmzjTLvz3pqbgztXdnO9cOIxdI9wigLnLCFo5DkQcnCPJ8YSNUBnBSVs8ZSMQRnKhhDpnFzmvAMBZCSOm5s2mW8divowhFWFbFZOuWzexKt6adh34S5PK5bKt6yMx36WY8yU7q8M6x6vjHbOPh_v36ROfvT4-TyczXgp0O66ELSno6HSUTgqtyVZYBuEqQRYM6VCZGgMpI0OJsjJoY00L0riIoCSKMbsZvF1qv_Yx7_yq3adt_9ILsERWayN6igaqTG3OKda-S80mpG-P4A95_JDH93n8bx5_UIthlHt4-xnTn_qf1Q_zaGVf</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Horgan, C. O.</creator><creator>Murphy, J. G.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20240701</creationdate><title>Simple Shear and Applied Piola-Kirchhoff Shear Stress</title><author>Horgan, C. O. ; Murphy, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomechanics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Engineering</topic><topic>Invariants</topic><topic>Materials Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Plane strain</topic><topic>Shear stress</topic><topic>Strain analysis</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horgan, C. O.</creatorcontrib><creatorcontrib>Murphy, J. G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horgan, C. O.</au><au>Murphy, J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Shear and Applied Piola-Kirchhoff Shear Stress</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>155</volume><issue>1-5</issue><spage>159</spage><epage>170</epage><pages>159-170</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-022-09924-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-3535 |
ispartof | Journal of elasticity, 2024-07, Vol.155 (1-5), p.159-170 |
issn | 0374-3535 1573-2681 |
language | eng |
recordid | cdi_proquest_journals_3082286673 |
source | SpringerNature Journals |
subjects | Biomechanics Classical and Continuum Physics Classical Mechanics Deformation analysis Deformation effects Engineering Invariants Materials Science Mathematical Applications in the Physical Sciences Plane strain Shear stress Strain analysis Tensors Theoretical and Applied Mechanics |
title | Simple Shear and Applied Piola-Kirchhoff Shear Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Shear%20and%20Applied%20Piola-Kirchhoff%20Shear%20Stress&rft.jtitle=Journal%20of%20elasticity&rft.au=Horgan,%20C.%20O.&rft.date=2024-07-01&rft.volume=155&rft.issue=1-5&rft.spage=159&rft.epage=170&rft.pages=159-170&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-022-09924-1&rft_dat=%3Cproquest_cross%3E3082286673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082286673&rft_id=info:pmid/&rfr_iscdi=true |