Simple Shear and Applied Piola-Kirchhoff Shear Stress

The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elasticity 2024-07, Vol.155 (1-5), p.159-170
Hauptverfasser: Horgan, C. O., Murphy, J. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 1-5
container_start_page 159
container_title Journal of elasticity
container_volume 155
creator Horgan, C. O.
Murphy, J. G.
description The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress.
doi_str_mv 10.1007/s10659-022-09924-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082286673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082286673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</originalsourceid><addsrcrecordid>eNp9kEtLw0AURgdRsFb_gKuA69F777yXpfjCgkJ1PUyTiU1pmzjTLvz3pqbgztXdnO9cOIxdI9wigLnLCFo5DkQcnCPJ8YSNUBnBSVs8ZSMQRnKhhDpnFzmvAMBZCSOm5s2mW8divowhFWFbFZOuWzexKt6adh34S5PK5bKt6yMx36WY8yU7q8M6x6vjHbOPh_v36ROfvT4-TyczXgp0O66ELSno6HSUTgqtyVZYBuEqQRYM6VCZGgMpI0OJsjJoY00L0riIoCSKMbsZvF1qv_Yx7_yq3adt_9ILsERWayN6igaqTG3OKda-S80mpG-P4A95_JDH93n8bx5_UIthlHt4-xnTn_qf1Q_zaGVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082286673</pqid></control><display><type>article</type><title>Simple Shear and Applied Piola-Kirchhoff Shear Stress</title><source>SpringerNature Journals</source><creator>Horgan, C. O. ; Murphy, J. G.</creator><creatorcontrib>Horgan, C. O. ; Murphy, J. G.</creatorcontrib><description>The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-022-09924-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomechanics ; Classical and Continuum Physics ; Classical Mechanics ; Deformation analysis ; Deformation effects ; Engineering ; Invariants ; Materials Science ; Mathematical Applications in the Physical Sciences ; Plane strain ; Shear stress ; Strain analysis ; Tensors ; Theoretical and Applied Mechanics</subject><ispartof>Journal of elasticity, 2024-07, Vol.155 (1-5), p.159-170</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</citedby><cites>FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-022-09924-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-022-09924-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Horgan, C. O.</creatorcontrib><creatorcontrib>Murphy, J. G.</creatorcontrib><title>Simple Shear and Applied Piola-Kirchhoff Shear Stress</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress.</description><subject>Biomechanics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Engineering</subject><subject>Invariants</subject><subject>Materials Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Plane strain</subject><subject>Shear stress</subject><subject>Strain analysis</subject><subject>Tensors</subject><subject>Theoretical and Applied Mechanics</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AURgdRsFb_gKuA69F777yXpfjCgkJ1PUyTiU1pmzjTLvz3pqbgztXdnO9cOIxdI9wigLnLCFo5DkQcnCPJ8YSNUBnBSVs8ZSMQRnKhhDpnFzmvAMBZCSOm5s2mW8divowhFWFbFZOuWzexKt6adh34S5PK5bKt6yMx36WY8yU7q8M6x6vjHbOPh_v36ROfvT4-TyczXgp0O66ELSno6HSUTgqtyVZYBuEqQRYM6VCZGgMpI0OJsjJoY00L0riIoCSKMbsZvF1qv_Yx7_yq3adt_9ILsERWayN6igaqTG3OKda-S80mpG-P4A95_JDH93n8bx5_UIthlHt4-xnTn_qf1Q_zaGVf</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Horgan, C. O.</creator><creator>Murphy, J. G.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20240701</creationdate><title>Simple Shear and Applied Piola-Kirchhoff Shear Stress</title><author>Horgan, C. O. ; Murphy, J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-538c2a6e96e49436628d1ca39d3280726ad7f1a2574ac14d718ef2b261be05413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomechanics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Engineering</topic><topic>Invariants</topic><topic>Materials Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Plane strain</topic><topic>Shear stress</topic><topic>Strain analysis</topic><topic>Tensors</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horgan, C. O.</creatorcontrib><creatorcontrib>Murphy, J. G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horgan, C. O.</au><au>Murphy, J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Shear and Applied Piola-Kirchhoff Shear Stress</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>155</volume><issue>1-5</issue><spage>159</spage><epage>170</epage><pages>159-170</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>The kinematical consequences of assuming a pure simple applied shear in terms of the Piola-Kirchhoff stress for homogeneous isotropic incompressible hyperelastic materials are explored. It is shown that for materials that depend only on the first invariant of the Cauchy-Green deformation tensors that the corresponding deformation is one of plane strain and that the sum of the in-plane shear terms can be written as a function of the applied Piola-Kirchhoff stress. Ericksen’s concept of maximum orthogonal shear is chosen as the strain measure that quantifies the effect of the applied shear stress. The analytic difficulties faced when both of the invariants of the deformation tensors are included are illustrated by consideration of the Mooney-Rivlin material. For this material a contractive out-of-the-plane stretch is required. There is now a coupled relationship between the stretch, the sum of the in-plane shear terms of the deformation tensor and the applied shear stress.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-022-09924-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0374-3535
ispartof Journal of elasticity, 2024-07, Vol.155 (1-5), p.159-170
issn 0374-3535
1573-2681
language eng
recordid cdi_proquest_journals_3082286673
source SpringerNature Journals
subjects Biomechanics
Classical and Continuum Physics
Classical Mechanics
Deformation analysis
Deformation effects
Engineering
Invariants
Materials Science
Mathematical Applications in the Physical Sciences
Plane strain
Shear stress
Strain analysis
Tensors
Theoretical and Applied Mechanics
title Simple Shear and Applied Piola-Kirchhoff Shear Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Shear%20and%20Applied%20Piola-Kirchhoff%20Shear%20Stress&rft.jtitle=Journal%20of%20elasticity&rft.au=Horgan,%20C.%20O.&rft.date=2024-07-01&rft.volume=155&rft.issue=1-5&rft.spage=159&rft.epage=170&rft.pages=159-170&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-022-09924-1&rft_dat=%3Cproquest_cross%3E3082286673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082286673&rft_id=info:pmid/&rfr_iscdi=true