On The Closures of Monotone Algebraic Classes and Variants of the Determinant
In this paper we prove the following two results. We show that for any C ∈ { mVF , mVP , mVNP } , C = C ¯ . Here, mVF , mVP , and mVNP are monotone variants of VF , VP , and VNP , respectively. For an algebraic complexity class C , C ¯ denotes the closure of C . For mVBP a similar result was shown i...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2024, Vol.86 (7), p.2130-2151 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2151 |
---|---|
container_issue | 7 |
container_start_page | 2130 |
container_title | Algorithmica |
container_volume | 86 |
creator | Chaugule, Prasad Limaye, Nutan |
description | In this paper we prove the following two results.
We show that for any
C
∈
{
mVF
,
mVP
,
mVNP
}
,
C
=
C
¯
. Here,
mVF
,
mVP
, and
mVNP
are monotone variants of
VF
,
VP
, and
VNP
, respectively. For an algebraic complexity class
C
,
C
¯
denotes the closure of
C
. For
mVBP
a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020.
https://doi.org/10.4230/LIPIcs.CCC.2020.21
). Here we extend their result by adapting their proof.
We define polynomial families
{
P
(
k
)
n
}
n
≥
0
, such that
{
P
(
0
)
n
}
n
≥
0
equals the determinant polynomial. We show that
{
P
(
k
)
n
}
n
≥
0
is
VBP
complete for
k
=
1
and it becomes
VNP
complete when
k
≥
2
. In particular,
{
P
(
k
)
n
}
is
Det
n
≠
k
(
X
)
, a polynomial obtained by summing over all signed cycle covers that avoid length
k
cycles. We show that
Det
n
≠
1
(
X
)
is complete for
VBP
and
Det
n
≠
k
(
X
)
is complete for
VNP
for all
k
≥
2
over any field
F
. |
doi_str_mv | 10.1007/s00453-024-01221-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082286564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082286564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-201467b1e09df8c9d8b1843519b91cbf3a721b6511d97745e9976d193ca66ecb3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4GrAdTQnyeSyLPUKLd1UtyGZydQpbVKT6cK3N3YEd64OnPP9_4EPoRsgd0CIvM-E8JphQjkmQClgdYImwBnFpOZwiiYEpMJcgDxHFzlvSKGkFhO0WIZq9eGr2TbmQ_K5il21iCEOMfhqul17l2zflLPNuVxtaKt3m3obhiM6lOiDH3za9aHsrtBZZ7fZX__OS_T29LiaveD58vl1Np3jhkoyYEqAC-nAE912qtGtcqA4q0E7DY3rmJUUnKgBWi0lr73WUrSgWWOF8I1jl-h27N2n-HnweTCbeEihvDSMKEqVqAUvFB2pJsWck-_MPvU7m74MEPOjzYzaTNFmjtqMKiE2hnKBw9qnv-p_Ut_xnW5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082286564</pqid></control><display><type>article</type><title>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</title><source>SpringerLink (Online service)</source><creator>Chaugule, Prasad ; Limaye, Nutan</creator><creatorcontrib>Chaugule, Prasad ; Limaye, Nutan</creatorcontrib><description>In this paper we prove the following two results.
We show that for any
C
∈
{
mVF
,
mVP
,
mVNP
}
,
C
=
C
¯
. Here,
mVF
,
mVP
, and
mVNP
are monotone variants of
VF
,
VP
, and
VNP
, respectively. For an algebraic complexity class
C
,
C
¯
denotes the closure of
C
. For
mVBP
a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020.
https://doi.org/10.4230/LIPIcs.CCC.2020.21
). Here we extend their result by adapting their proof.
We define polynomial families
{
P
(
k
)
n
}
n
≥
0
, such that
{
P
(
0
)
n
}
n
≥
0
equals the determinant polynomial. We show that
{
P
(
k
)
n
}
n
≥
0
is
VBP
complete for
k
=
1
and it becomes
VNP
complete when
k
≥
2
. In particular,
{
P
(
k
)
n
}
is
Det
n
≠
k
(
X
)
, a polynomial obtained by summing over all signed cycle covers that avoid length
k
cycles. We show that
Det
n
≠
1
(
X
)
is complete for
VBP
and
Det
n
≠
k
(
X
)
is complete for
VNP
for all
k
≥
2
over any field
F
.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-024-01221-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Complexity ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Mathematics of Computing ; Polynomials ; Theory of Computation</subject><ispartof>Algorithmica, 2024, Vol.86 (7), p.2130-2151</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-201467b1e09df8c9d8b1843519b91cbf3a721b6511d97745e9976d193ca66ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-024-01221-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-024-01221-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chaugule, Prasad</creatorcontrib><creatorcontrib>Limaye, Nutan</creatorcontrib><title>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>In this paper we prove the following two results.
We show that for any
C
∈
{
mVF
,
mVP
,
mVNP
}
,
C
=
C
¯
. Here,
mVF
,
mVP
, and
mVNP
are monotone variants of
VF
,
VP
, and
VNP
, respectively. For an algebraic complexity class
C
,
C
¯
denotes the closure of
C
. For
mVBP
a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020.
https://doi.org/10.4230/LIPIcs.CCC.2020.21
). Here we extend their result by adapting their proof.
We define polynomial families
{
P
(
k
)
n
}
n
≥
0
, such that
{
P
(
0
)
n
}
n
≥
0
equals the determinant polynomial. We show that
{
P
(
k
)
n
}
n
≥
0
is
VBP
complete for
k
=
1
and it becomes
VNP
complete when
k
≥
2
. In particular,
{
P
(
k
)
n
}
is
Det
n
≠
k
(
X
)
, a polynomial obtained by summing over all signed cycle covers that avoid length
k
cycles. We show that
Det
n
≠
1
(
X
)
is complete for
VBP
and
Det
n
≠
k
(
X
)
is complete for
VNP
for all
k
≥
2
over any field
F
.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Mathematics of Computing</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4GrAdTQnyeSyLPUKLd1UtyGZydQpbVKT6cK3N3YEd64OnPP9_4EPoRsgd0CIvM-E8JphQjkmQClgdYImwBnFpOZwiiYEpMJcgDxHFzlvSKGkFhO0WIZq9eGr2TbmQ_K5il21iCEOMfhqul17l2zflLPNuVxtaKt3m3obhiM6lOiDH3za9aHsrtBZZ7fZX__OS_T29LiaveD58vl1Np3jhkoyYEqAC-nAE912qtGtcqA4q0E7DY3rmJUUnKgBWi0lr73WUrSgWWOF8I1jl-h27N2n-HnweTCbeEihvDSMKEqVqAUvFB2pJsWck-_MPvU7m74MEPOjzYzaTNFmjtqMKiE2hnKBw9qnv-p_Ut_xnW5I</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chaugule, Prasad</creator><creator>Limaye, Nutan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</title><author>Chaugule, Prasad ; Limaye, Nutan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-201467b1e09df8c9d8b1843519b91cbf3a721b6511d97745e9976d193ca66ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Mathematics of Computing</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaugule, Prasad</creatorcontrib><creatorcontrib>Limaye, Nutan</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaugule, Prasad</au><au>Limaye, Nutan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2024</date><risdate>2024</risdate><volume>86</volume><issue>7</issue><spage>2130</spage><epage>2151</epage><pages>2130-2151</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>In this paper we prove the following two results.
We show that for any
C
∈
{
mVF
,
mVP
,
mVNP
}
,
C
=
C
¯
. Here,
mVF
,
mVP
, and
mVNP
are monotone variants of
VF
,
VP
, and
VNP
, respectively. For an algebraic complexity class
C
,
C
¯
denotes the closure of
C
. For
mVBP
a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020.
https://doi.org/10.4230/LIPIcs.CCC.2020.21
). Here we extend their result by adapting their proof.
We define polynomial families
{
P
(
k
)
n
}
n
≥
0
, such that
{
P
(
0
)
n
}
n
≥
0
equals the determinant polynomial. We show that
{
P
(
k
)
n
}
n
≥
0
is
VBP
complete for
k
=
1
and it becomes
VNP
complete when
k
≥
2
. In particular,
{
P
(
k
)
n
}
is
Det
n
≠
k
(
X
)
, a polynomial obtained by summing over all signed cycle covers that avoid length
k
cycles. We show that
Det
n
≠
1
(
X
)
is complete for
VBP
and
Det
n
≠
k
(
X
)
is complete for
VNP
for all
k
≥
2
over any field
F
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-024-01221-8</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2024, Vol.86 (7), p.2130-2151 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_proquest_journals_3082286564 |
source | SpringerLink (Online service) |
subjects | Algorithm Analysis and Problem Complexity Algorithms Complexity Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Mathematics of Computing Polynomials Theory of Computation |
title | On The Closures of Monotone Algebraic Classes and Variants of the Determinant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20The%20Closures%20of%20Monotone%20Algebraic%20Classes%20and%20Variants%20of%20the%20Determinant&rft.jtitle=Algorithmica&rft.au=Chaugule,%20Prasad&rft.date=2024&rft.volume=86&rft.issue=7&rft.spage=2130&rft.epage=2151&rft.pages=2130-2151&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-024-01221-8&rft_dat=%3Cproquest_cross%3E3082286564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082286564&rft_id=info:pmid/&rfr_iscdi=true |