On The Closures of Monotone Algebraic Classes and Variants of the Determinant

In this paper we prove the following two results. We show that for any C ∈ { mVF , mVP , mVNP } , C = C ¯ . Here, mVF , mVP , and mVNP are monotone variants of VF , VP , and VNP , respectively. For an algebraic complexity class C , C ¯ denotes the closure of C . For mVBP a similar result was shown i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2024, Vol.86 (7), p.2130-2151
Hauptverfasser: Chaugule, Prasad, Limaye, Nutan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2151
container_issue 7
container_start_page 2130
container_title Algorithmica
container_volume 86
creator Chaugule, Prasad
Limaye, Nutan
description In this paper we prove the following two results. We show that for any C ∈ { mVF , mVP , mVNP } , C = C ¯ . Here, mVF , mVP , and mVNP are monotone variants of VF , VP , and VNP , respectively. For an algebraic complexity class C , C ¯ denotes the closure of C . For mVBP a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020. https://doi.org/10.4230/LIPIcs.CCC.2020.21 ). Here we extend their result by adapting their proof. We define polynomial families { P ( k ) n } n ≥ 0 , such that { P ( 0 ) n } n ≥ 0 equals the determinant polynomial. We show that { P ( k ) n } n ≥ 0 is VBP complete for k = 1 and it becomes VNP complete when k ≥ 2 . In particular, { P ( k ) n } is Det n ≠ k ( X ) , a polynomial obtained by summing over all signed cycle covers that avoid length k cycles. We show that Det n ≠ 1 ( X ) is complete for VBP and Det n ≠ k ( X ) is complete for VNP for all k ≥ 2 over any field F .
doi_str_mv 10.1007/s00453-024-01221-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082286564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082286564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-201467b1e09df8c9d8b1843519b91cbf3a721b6511d97745e9976d193ca66ecb3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4GrAdTQnyeSyLPUKLd1UtyGZydQpbVKT6cK3N3YEd64OnPP9_4EPoRsgd0CIvM-E8JphQjkmQClgdYImwBnFpOZwiiYEpMJcgDxHFzlvSKGkFhO0WIZq9eGr2TbmQ_K5il21iCEOMfhqul17l2zflLPNuVxtaKt3m3obhiM6lOiDH3za9aHsrtBZZ7fZX__OS_T29LiaveD58vl1Np3jhkoyYEqAC-nAE912qtGtcqA4q0E7DY3rmJUUnKgBWi0lr73WUrSgWWOF8I1jl-h27N2n-HnweTCbeEihvDSMKEqVqAUvFB2pJsWck-_MPvU7m74MEPOjzYzaTNFmjtqMKiE2hnKBw9qnv-p_Ut_xnW5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082286564</pqid></control><display><type>article</type><title>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</title><source>SpringerLink (Online service)</source><creator>Chaugule, Prasad ; Limaye, Nutan</creator><creatorcontrib>Chaugule, Prasad ; Limaye, Nutan</creatorcontrib><description>In this paper we prove the following two results. We show that for any C ∈ { mVF , mVP , mVNP } , C = C ¯ . Here, mVF , mVP , and mVNP are monotone variants of VF , VP , and VNP , respectively. For an algebraic complexity class C , C ¯ denotes the closure of C . For mVBP a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020. https://doi.org/10.4230/LIPIcs.CCC.2020.21 ). Here we extend their result by adapting their proof. We define polynomial families { P ( k ) n } n ≥ 0 , such that { P ( 0 ) n } n ≥ 0 equals the determinant polynomial. We show that { P ( k ) n } n ≥ 0 is VBP complete for k = 1 and it becomes VNP complete when k ≥ 2 . In particular, { P ( k ) n } is Det n ≠ k ( X ) , a polynomial obtained by summing over all signed cycle covers that avoid length k cycles. We show that Det n ≠ 1 ( X ) is complete for VBP and Det n ≠ k ( X ) is complete for VNP for all k ≥ 2 over any field F .</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-024-01221-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Complexity ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Mathematics of Computing ; Polynomials ; Theory of Computation</subject><ispartof>Algorithmica, 2024, Vol.86 (7), p.2130-2151</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-201467b1e09df8c9d8b1843519b91cbf3a721b6511d97745e9976d193ca66ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-024-01221-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-024-01221-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chaugule, Prasad</creatorcontrib><creatorcontrib>Limaye, Nutan</creatorcontrib><title>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>In this paper we prove the following two results. We show that for any C ∈ { mVF , mVP , mVNP } , C = C ¯ . Here, mVF , mVP , and mVNP are monotone variants of VF , VP , and VNP , respectively. For an algebraic complexity class C , C ¯ denotes the closure of C . For mVBP a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020. https://doi.org/10.4230/LIPIcs.CCC.2020.21 ). Here we extend their result by adapting their proof. We define polynomial families { P ( k ) n } n ≥ 0 , such that { P ( 0 ) n } n ≥ 0 equals the determinant polynomial. We show that { P ( k ) n } n ≥ 0 is VBP complete for k = 1 and it becomes VNP complete when k ≥ 2 . In particular, { P ( k ) n } is Det n ≠ k ( X ) , a polynomial obtained by summing over all signed cycle covers that avoid length k cycles. We show that Det n ≠ 1 ( X ) is complete for VBP and Det n ≠ k ( X ) is complete for VNP for all k ≥ 2 over any field F .</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Mathematics of Computing</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4GrAdTQnyeSyLPUKLd1UtyGZydQpbVKT6cK3N3YEd64OnPP9_4EPoRsgd0CIvM-E8JphQjkmQClgdYImwBnFpOZwiiYEpMJcgDxHFzlvSKGkFhO0WIZq9eGr2TbmQ_K5il21iCEOMfhqul17l2zflLPNuVxtaKt3m3obhiM6lOiDH3za9aHsrtBZZ7fZX__OS_T29LiaveD58vl1Np3jhkoyYEqAC-nAE912qtGtcqA4q0E7DY3rmJUUnKgBWi0lr73WUrSgWWOF8I1jl-h27N2n-HnweTCbeEihvDSMKEqVqAUvFB2pJsWck-_MPvU7m74MEPOjzYzaTNFmjtqMKiE2hnKBw9qnv-p_Ut_xnW5I</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chaugule, Prasad</creator><creator>Limaye, Nutan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</title><author>Chaugule, Prasad ; Limaye, Nutan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-201467b1e09df8c9d8b1843519b91cbf3a721b6511d97745e9976d193ca66ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Mathematics of Computing</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaugule, Prasad</creatorcontrib><creatorcontrib>Limaye, Nutan</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaugule, Prasad</au><au>Limaye, Nutan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On The Closures of Monotone Algebraic Classes and Variants of the Determinant</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2024</date><risdate>2024</risdate><volume>86</volume><issue>7</issue><spage>2130</spage><epage>2151</epage><pages>2130-2151</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>In this paper we prove the following two results. We show that for any C ∈ { mVF , mVP , mVNP } , C = C ¯ . Here, mVF , mVP , and mVNP are monotone variants of VF , VP , and VNP , respectively. For an algebraic complexity class C , C ¯ denotes the closure of C . For mVBP a similar result was shown in Bläser et al. (in: 35th Computational Complexity Conference, CCC 2020. LIPIcs, vol 169, pp 21–12124, 2020. https://doi.org/10.4230/LIPIcs.CCC.2020.21 ). Here we extend their result by adapting their proof. We define polynomial families { P ( k ) n } n ≥ 0 , such that { P ( 0 ) n } n ≥ 0 equals the determinant polynomial. We show that { P ( k ) n } n ≥ 0 is VBP complete for k = 1 and it becomes VNP complete when k ≥ 2 . In particular, { P ( k ) n } is Det n ≠ k ( X ) , a polynomial obtained by summing over all signed cycle covers that avoid length k cycles. We show that Det n ≠ 1 ( X ) is complete for VBP and Det n ≠ k ( X ) is complete for VNP for all k ≥ 2 over any field F .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-024-01221-8</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2024, Vol.86 (7), p.2130-2151
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_3082286564
source SpringerLink (Online service)
subjects Algorithm Analysis and Problem Complexity
Algorithms
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematics of Computing
Polynomials
Theory of Computation
title On The Closures of Monotone Algebraic Classes and Variants of the Determinant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20The%20Closures%20of%20Monotone%20Algebraic%20Classes%20and%20Variants%20of%20the%20Determinant&rft.jtitle=Algorithmica&rft.au=Chaugule,%20Prasad&rft.date=2024&rft.volume=86&rft.issue=7&rft.spage=2130&rft.epage=2151&rft.pages=2130-2151&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-024-01221-8&rft_dat=%3Cproquest_cross%3E3082286564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082286564&rft_id=info:pmid/&rfr_iscdi=true