Strong tunable coupling between two distant superconducting spin qubits

Andreev spin qubits have recently emerged as an alternative qubit platform with realizations in semiconductor–superconductor hybrid nanowires. In these qubits, the spin degree of freedom of a quasiparticle trapped in a Josephson junction is intrinsically spin–orbit coupled to the supercurrent across...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2024-07, Vol.20 (7), p.1158-1163
Hauptverfasser: Pita-Vidal, Marta, Wesdorp, Jaap J., Splitthoff, Lukas J., Bargerbos, Arno, Liu, Yu, Kouwenhoven, Leo P., Andersen, Christian Kraglund
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1163
container_issue 7
container_start_page 1158
container_title Nature physics
container_volume 20
creator Pita-Vidal, Marta
Wesdorp, Jaap J.
Splitthoff, Lukas J.
Bargerbos, Arno
Liu, Yu
Kouwenhoven, Leo P.
Andersen, Christian Kraglund
description Andreev spin qubits have recently emerged as an alternative qubit platform with realizations in semiconductor–superconductor hybrid nanowires. In these qubits, the spin degree of freedom of a quasiparticle trapped in a Josephson junction is intrinsically spin–orbit coupled to the supercurrent across the junction. This interaction has previously been used to perform spin readout, but it has also been predicted to facilitate inductive multi-qubit coupling. Here we demonstrate a strong supercurrent-mediated longitudinal coupling between two distant Andreev spin qubits. We show that it is both gate- and flux-tunable into the strong coupling regime and, furthermore, that magnetic flux can be used to switch off the coupling in situ. Our results demonstrate that integrating microscopic spin states into a superconducting qubit architecture can combine the advantages of both semiconductors and superconducting circuits and pave the way to fast two-qubit gates between distant spins. The hybrid architecture of Andreev spin qubits made using semiconductor–superconductor nanowires means that supercurrents can be used to inductively couple qubits over long distances.
doi_str_mv 10.1038/s41567-024-02497-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082036741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082036741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-73fd5e97a28b8dff660b7d05d02b1ab342e8e007b52941b8590161bcccd5e0f93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJx26yRylahYIH9Rw22WzZUpNtPmj996au6M3DMMPwPDPwInSN4RYDFXeB4armJRB2rIaXhxM0w5xVJWECn_7OnJ6jixA2AIzUmM7Q8jV6Z9dFTLZVW1Nol8btkBfKxL0xtoh7V3RDiK2NRUij8drZLul4ZMI42GKX1BDDJTrr220wVz99jt4fH94WT-XqZfm8uF-VmnCIJad9V5mGt0Qo0fV9XYPiHVQdEIVbRRkxwgBwVZGGYSWqBnCNldY6a9A3dI5uprujd7tkQpQbl7zNLyUFQYDWnOFMkYnS3oXgTS9HP3y0_lNikMfA5BSYzGHJ78DkIUt0kkKG7dr4v9P_WF8eDG-r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082036741</pqid></control><display><type>article</type><title>Strong tunable coupling between two distant superconducting spin qubits</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Pita-Vidal, Marta ; Wesdorp, Jaap J. ; Splitthoff, Lukas J. ; Bargerbos, Arno ; Liu, Yu ; Kouwenhoven, Leo P. ; Andersen, Christian Kraglund</creator><creatorcontrib>Pita-Vidal, Marta ; Wesdorp, Jaap J. ; Splitthoff, Lukas J. ; Bargerbos, Arno ; Liu, Yu ; Kouwenhoven, Leo P. ; Andersen, Christian Kraglund</creatorcontrib><description>Andreev spin qubits have recently emerged as an alternative qubit platform with realizations in semiconductor–superconductor hybrid nanowires. In these qubits, the spin degree of freedom of a quasiparticle trapped in a Josephson junction is intrinsically spin–orbit coupled to the supercurrent across the junction. This interaction has previously been used to perform spin readout, but it has also been predicted to facilitate inductive multi-qubit coupling. Here we demonstrate a strong supercurrent-mediated longitudinal coupling between two distant Andreev spin qubits. We show that it is both gate- and flux-tunable into the strong coupling regime and, furthermore, that magnetic flux can be used to switch off the coupling in situ. Our results demonstrate that integrating microscopic spin states into a superconducting qubit architecture can combine the advantages of both semiconductors and superconducting circuits and pave the way to fast two-qubit gates between distant spins. The hybrid architecture of Andreev spin qubits made using semiconductor–superconductor nanowires means that supercurrents can be used to inductively couple qubits over long distances.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-024-02497-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/483/2802 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Coupling ; Elementary excitations ; Josephson junctions ; Magnetic flux ; Magnetic semiconductors ; Mathematical and Computational Physics ; Molecular ; Nanowires ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Qubits (quantum computing) ; Superconductivity ; Theoretical</subject><ispartof>Nature physics, 2024-07, Vol.20 (7), p.1158-1163</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-73fd5e97a28b8dff660b7d05d02b1ab342e8e007b52941b8590161bcccd5e0f93</cites><orcidid>0000-0002-1068-8211 ; 0000-0001-9328-5604 ; 0000-0002-1869-5811 ; 0000-0003-2253-6239 ; 0000-0002-3696-558X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-024-02497-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-024-02497-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pita-Vidal, Marta</creatorcontrib><creatorcontrib>Wesdorp, Jaap J.</creatorcontrib><creatorcontrib>Splitthoff, Lukas J.</creatorcontrib><creatorcontrib>Bargerbos, Arno</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Andersen, Christian Kraglund</creatorcontrib><title>Strong tunable coupling between two distant superconducting spin qubits</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Andreev spin qubits have recently emerged as an alternative qubit platform with realizations in semiconductor–superconductor hybrid nanowires. In these qubits, the spin degree of freedom of a quasiparticle trapped in a Josephson junction is intrinsically spin–orbit coupled to the supercurrent across the junction. This interaction has previously been used to perform spin readout, but it has also been predicted to facilitate inductive multi-qubit coupling. Here we demonstrate a strong supercurrent-mediated longitudinal coupling between two distant Andreev spin qubits. We show that it is both gate- and flux-tunable into the strong coupling regime and, furthermore, that magnetic flux can be used to switch off the coupling in situ. Our results demonstrate that integrating microscopic spin states into a superconducting qubit architecture can combine the advantages of both semiconductors and superconducting circuits and pave the way to fast two-qubit gates between distant spins. The hybrid architecture of Andreev spin qubits made using semiconductor–superconductor nanowires means that supercurrents can be used to inductively couple qubits over long distances.</description><subject>639/766/119/1003</subject><subject>639/766/483/2802</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Coupling</subject><subject>Elementary excitations</subject><subject>Josephson junctions</subject><subject>Magnetic flux</subject><subject>Magnetic semiconductors</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanowires</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Qubits (quantum computing)</subject><subject>Superconductivity</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJx26yRylahYIH9Rw22WzZUpNtPmj996au6M3DMMPwPDPwInSN4RYDFXeB4armJRB2rIaXhxM0w5xVJWECn_7OnJ6jixA2AIzUmM7Q8jV6Z9dFTLZVW1Nol8btkBfKxL0xtoh7V3RDiK2NRUij8drZLul4ZMI42GKX1BDDJTrr220wVz99jt4fH94WT-XqZfm8uF-VmnCIJad9V5mGt0Qo0fV9XYPiHVQdEIVbRRkxwgBwVZGGYSWqBnCNldY6a9A3dI5uprujd7tkQpQbl7zNLyUFQYDWnOFMkYnS3oXgTS9HP3y0_lNikMfA5BSYzGHJ78DkIUt0kkKG7dr4v9P_WF8eDG-r</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Pita-Vidal, Marta</creator><creator>Wesdorp, Jaap J.</creator><creator>Splitthoff, Lukas J.</creator><creator>Bargerbos, Arno</creator><creator>Liu, Yu</creator><creator>Kouwenhoven, Leo P.</creator><creator>Andersen, Christian Kraglund</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1068-8211</orcidid><orcidid>https://orcid.org/0000-0001-9328-5604</orcidid><orcidid>https://orcid.org/0000-0002-1869-5811</orcidid><orcidid>https://orcid.org/0000-0003-2253-6239</orcidid><orcidid>https://orcid.org/0000-0002-3696-558X</orcidid></search><sort><creationdate>20240701</creationdate><title>Strong tunable coupling between two distant superconducting spin qubits</title><author>Pita-Vidal, Marta ; Wesdorp, Jaap J. ; Splitthoff, Lukas J. ; Bargerbos, Arno ; Liu, Yu ; Kouwenhoven, Leo P. ; Andersen, Christian Kraglund</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-73fd5e97a28b8dff660b7d05d02b1ab342e8e007b52941b8590161bcccd5e0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/119/1003</topic><topic>639/766/483/2802</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Coupling</topic><topic>Elementary excitations</topic><topic>Josephson junctions</topic><topic>Magnetic flux</topic><topic>Magnetic semiconductors</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanowires</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Qubits (quantum computing)</topic><topic>Superconductivity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pita-Vidal, Marta</creatorcontrib><creatorcontrib>Wesdorp, Jaap J.</creatorcontrib><creatorcontrib>Splitthoff, Lukas J.</creatorcontrib><creatorcontrib>Bargerbos, Arno</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Andersen, Christian Kraglund</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pita-Vidal, Marta</au><au>Wesdorp, Jaap J.</au><au>Splitthoff, Lukas J.</au><au>Bargerbos, Arno</au><au>Liu, Yu</au><au>Kouwenhoven, Leo P.</au><au>Andersen, Christian Kraglund</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong tunable coupling between two distant superconducting spin qubits</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>20</volume><issue>7</issue><spage>1158</spage><epage>1163</epage><pages>1158-1163</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Andreev spin qubits have recently emerged as an alternative qubit platform with realizations in semiconductor–superconductor hybrid nanowires. In these qubits, the spin degree of freedom of a quasiparticle trapped in a Josephson junction is intrinsically spin–orbit coupled to the supercurrent across the junction. This interaction has previously been used to perform spin readout, but it has also been predicted to facilitate inductive multi-qubit coupling. Here we demonstrate a strong supercurrent-mediated longitudinal coupling between two distant Andreev spin qubits. We show that it is both gate- and flux-tunable into the strong coupling regime and, furthermore, that magnetic flux can be used to switch off the coupling in situ. Our results demonstrate that integrating microscopic spin states into a superconducting qubit architecture can combine the advantages of both semiconductors and superconducting circuits and pave the way to fast two-qubit gates between distant spins. The hybrid architecture of Andreev spin qubits made using semiconductor–superconductor nanowires means that supercurrents can be used to inductively couple qubits over long distances.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-024-02497-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1068-8211</orcidid><orcidid>https://orcid.org/0000-0001-9328-5604</orcidid><orcidid>https://orcid.org/0000-0002-1869-5811</orcidid><orcidid>https://orcid.org/0000-0003-2253-6239</orcidid><orcidid>https://orcid.org/0000-0002-3696-558X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2024-07, Vol.20 (7), p.1158-1163
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_3082036741
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/766/119/1003
639/766/483/2802
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Coupling
Elementary excitations
Josephson junctions
Magnetic flux
Magnetic semiconductors
Mathematical and Computational Physics
Molecular
Nanowires
Optical and Plasma Physics
Physics
Physics and Astronomy
Qubits (quantum computing)
Superconductivity
Theoretical
title Strong tunable coupling between two distant superconducting spin qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20tunable%20coupling%20between%20two%20distant%20superconducting%20spin%20qubits&rft.jtitle=Nature%20physics&rft.au=Pita-Vidal,%20Marta&rft.date=2024-07-01&rft.volume=20&rft.issue=7&rft.spage=1158&rft.epage=1163&rft.pages=1158-1163&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-024-02497-x&rft_dat=%3Cproquest_cross%3E3082036741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082036741&rft_id=info:pmid/&rfr_iscdi=true