Application of the tight-binding method onto the Von Neumann equation

This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2024-08, Vol.23 (4), p.707-717
Hauptverfasser: Abdi, Alan, Schulz, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 4
container_start_page 707
container_title Journal of computational electronics
container_volume 23
creator Abdi, Alan
Schulz, Dirk
description This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed.
doi_str_mv 10.1007/s10825-024-02173-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081990970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081990970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f4ff1e5cd3bf032a47a52fa69fd76b30605f96fc31f042a4dce16a60d5161b7a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SS7x1LqHxC9qNeQ3U3aLW2yTbIHv71pV_DmYZiB93tv4CF0S-CeAMiHSKCiHAMt8xDJsDhDM8IlxRVh8vx4ixpXQPkluopxC0AzS2ZotRiGXd_q1HtXeFukjSlSv94k3PSu69262Ju08V3hXfIn9SuDb2bca-cKcxhPzmt0YfUumpvfPUefj6uP5TN-fX96WS5ecctImbAtrSWGtx1rLDCqS6k5tVrUtpOiYSCA21rYDFsos9y1hggtoONEkEZqNkd3U-4Q_GE0MamtH4PLLxWDitQ11BIyRSeqDT7GYKwaQr_X4VsRUMe61FSXyhWoU11KZBObTDHDbm3CX_Q_rh94gW0P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081990970</pqid></control><display><type>article</type><title>Application of the tight-binding method onto the Von Neumann equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abdi, Alan ; Schulz, Dirk</creator><creatorcontrib>Abdi, Alan ; Schulz, Dirk</creatorcontrib><description>This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-024-02173-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic structure ; Binding ; Boundary conditions ; Eigenvalues ; Electrical Engineering ; Engineering ; Hamiltonian functions ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Optical and Electronic Materials ; Systems stability ; Theoretical</subject><ispartof>Journal of computational electronics, 2024-08, Vol.23 (4), p.707-717</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-f4ff1e5cd3bf032a47a52fa69fd76b30605f96fc31f042a4dce16a60d5161b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-024-02173-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10825-024-02173-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Abdi, Alan</creatorcontrib><creatorcontrib>Schulz, Dirk</creatorcontrib><title>Application of the tight-binding method onto the Von Neumann equation</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed.</description><subject>Atomic structure</subject><subject>Binding</subject><subject>Boundary conditions</subject><subject>Eigenvalues</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Systems stability</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SS7x1LqHxC9qNeQ3U3aLW2yTbIHv71pV_DmYZiB93tv4CF0S-CeAMiHSKCiHAMt8xDJsDhDM8IlxRVh8vx4ixpXQPkluopxC0AzS2ZotRiGXd_q1HtXeFukjSlSv94k3PSu69262Ju08V3hXfIn9SuDb2bca-cKcxhPzmt0YfUumpvfPUefj6uP5TN-fX96WS5ecctImbAtrSWGtx1rLDCqS6k5tVrUtpOiYSCA21rYDFsos9y1hggtoONEkEZqNkd3U-4Q_GE0MamtH4PLLxWDitQ11BIyRSeqDT7GYKwaQr_X4VsRUMe61FSXyhWoU11KZBObTDHDbm3CX_Q_rh94gW0P</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Abdi, Alan</creator><creator>Schulz, Dirk</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240801</creationdate><title>Application of the tight-binding method onto the Von Neumann equation</title><author>Abdi, Alan ; Schulz, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f4ff1e5cd3bf032a47a52fa69fd76b30605f96fc31f042a4dce16a60d5161b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Binding</topic><topic>Boundary conditions</topic><topic>Eigenvalues</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Systems stability</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdi, Alan</creatorcontrib><creatorcontrib>Schulz, Dirk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdi, Alan</au><au>Schulz, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the tight-binding method onto the Von Neumann equation</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>707</spage><epage>717</epage><pages>707-717</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-024-02173-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2024-08, Vol.23 (4), p.707-717
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_journals_3081990970
source SpringerLink Journals - AutoHoldings
subjects Atomic structure
Binding
Boundary conditions
Eigenvalues
Electrical Engineering
Engineering
Hamiltonian functions
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
Optical and Electronic Materials
Systems stability
Theoretical
title Application of the tight-binding method onto the Von Neumann equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20tight-binding%20method%20onto%20the%20Von%20Neumann%20equation&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Abdi,%20Alan&rft.date=2024-08-01&rft.volume=23&rft.issue=4&rft.spage=707&rft.epage=717&rft.pages=707-717&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-024-02173-6&rft_dat=%3Cproquest_cross%3E3081990970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081990970&rft_id=info:pmid/&rfr_iscdi=true