Application of the tight-binding method onto the Von Neumann equation
This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has t...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2024-08, Vol.23 (4), p.707-717 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 4 |
container_start_page | 707 |
container_title | Journal of computational electronics |
container_volume | 23 |
creator | Abdi, Alan Schulz, Dirk |
description | This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed. |
doi_str_mv | 10.1007/s10825-024-02173-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081990970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081990970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-f4ff1e5cd3bf032a47a52fa69fd76b30605f96fc31f042a4dce16a60d5161b7a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SS7x1LqHxC9qNeQ3U3aLW2yTbIHv71pV_DmYZiB93tv4CF0S-CeAMiHSKCiHAMt8xDJsDhDM8IlxRVh8vx4ixpXQPkluopxC0AzS2ZotRiGXd_q1HtXeFukjSlSv94k3PSu69262Ju08V3hXfIn9SuDb2bca-cKcxhPzmt0YfUumpvfPUefj6uP5TN-fX96WS5ecctImbAtrSWGtx1rLDCqS6k5tVrUtpOiYSCA21rYDFsos9y1hggtoONEkEZqNkd3U-4Q_GE0MamtH4PLLxWDitQ11BIyRSeqDT7GYKwaQr_X4VsRUMe61FSXyhWoU11KZBObTDHDbm3CX_Q_rh94gW0P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081990970</pqid></control><display><type>article</type><title>Application of the tight-binding method onto the Von Neumann equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abdi, Alan ; Schulz, Dirk</creator><creatorcontrib>Abdi, Alan ; Schulz, Dirk</creatorcontrib><description>This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-024-02173-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic structure ; Binding ; Boundary conditions ; Eigenvalues ; Electrical Engineering ; Engineering ; Hamiltonian functions ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; Optical and Electronic Materials ; Systems stability ; Theoretical</subject><ispartof>Journal of computational electronics, 2024-08, Vol.23 (4), p.707-717</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-f4ff1e5cd3bf032a47a52fa69fd76b30605f96fc31f042a4dce16a60d5161b7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-024-02173-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10825-024-02173-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Abdi, Alan</creatorcontrib><creatorcontrib>Schulz, Dirk</creatorcontrib><title>Application of the tight-binding method onto the Von Neumann equation</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed.</description><subject>Atomic structure</subject><subject>Binding</subject><subject>Boundary conditions</subject><subject>Eigenvalues</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Systems stability</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SS7x1LqHxC9qNeQ3U3aLW2yTbIHv71pV_DmYZiB93tv4CF0S-CeAMiHSKCiHAMt8xDJsDhDM8IlxRVh8vx4ixpXQPkluopxC0AzS2ZotRiGXd_q1HtXeFukjSlSv94k3PSu69262Ju08V3hXfIn9SuDb2bca-cKcxhPzmt0YfUumpvfPUefj6uP5TN-fX96WS5ecctImbAtrSWGtx1rLDCqS6k5tVrUtpOiYSCA21rYDFsos9y1hggtoONEkEZqNkd3U-4Q_GE0MamtH4PLLxWDitQ11BIyRSeqDT7GYKwaQr_X4VsRUMe61FSXyhWoU11KZBObTDHDbm3CX_Q_rh94gW0P</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Abdi, Alan</creator><creator>Schulz, Dirk</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240801</creationdate><title>Application of the tight-binding method onto the Von Neumann equation</title><author>Abdi, Alan ; Schulz, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-f4ff1e5cd3bf032a47a52fa69fd76b30605f96fc31f042a4dce16a60d5161b7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Binding</topic><topic>Boundary conditions</topic><topic>Eigenvalues</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Systems stability</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdi, Alan</creatorcontrib><creatorcontrib>Schulz, Dirk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdi, Alan</au><au>Schulz, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the tight-binding method onto the Von Neumann equation</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><spage>707</spage><epage>717</epage><pages>707-717</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>This paper presents a numerical framework for the analysis of quantum devices based on the Von Neumann (VN) equation, which involves the concept of the Tight-Binding Method (TBM). The model is based on the application of the Tight-Binding Hamiltonian within Quantum Liouville Type Equations and has the advantage that the atomic structure of the materials used is taken into account. Furthermore, the influence of a Complex Absorbing Potential (CAP) as a complementary boundary condition and its essential contribution to the system stability with respect to the eigenvalue spectrum is discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10825-024-02173-6</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2024-08, Vol.23 (4), p.707-717 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_journals_3081990970 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic structure Binding Boundary conditions Eigenvalues Electrical Engineering Engineering Hamiltonian functions Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Optical and Electronic Materials Systems stability Theoretical |
title | Application of the tight-binding method onto the Von Neumann equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20tight-binding%20method%20onto%20the%20Von%20Neumann%20equation&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Abdi,%20Alan&rft.date=2024-08-01&rft.volume=23&rft.issue=4&rft.spage=707&rft.epage=717&rft.pages=707-717&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-024-02173-6&rft_dat=%3Cproquest_cross%3E3081990970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081990970&rft_id=info:pmid/&rfr_iscdi=true |