A general and modular approach to solid-state integration and readout of zero-dimensional quantum systems
Electronic spectroscopy of zero-dimensional (0D) quantum systems, including point defects in solids, atomic states, and small molecules, is a critical tool for developing a fundamental understanding of these systems, with applications ranging from solid-state and molecular materials development to e...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kavand, Marzieh Phillips, Zoe Koll, William H Hamilton, Morgan Perez-Hoyos, Ethel Greer, Rianna Ferdous Ara Pharis, Dan Mehdi Maleki Sanukesh Xu, Mingyu Taniguchi, Takashi Canfield, Paul Flatté, Michael E Freedman, Danna E Gupta, Jay Johnston-Halperin, Ezekiel |
description | Electronic spectroscopy of zero-dimensional (0D) quantum systems, including point defects in solids, atomic states, and small molecules, is a critical tool for developing a fundamental understanding of these systems, with applications ranging from solid-state and molecular materials development to emerging technologies rooted in quantum information science. Toward this end, scanning tunneling spectroscopy (STS) has demonstrated atomic-scale sensitivity, but is not easily scalable for applications, whereas device-based approaches rely on embedding these systems within a solid-state tunnel junction (TJ) and are not generally applicable. Here we demonstrate an all-electrical readout mechanism for these quasi-0D states that is modular and general, dramatically expanding the phase space of accessible quantum systems and providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multi-layer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target quantum system (QS) in an MLG/hBN/QS/hBN/MLG heterostructure. This structure allows for electronic spectroscopy and readout of candidate quantum systems through a combination of Coulomb and spin-blockade, providing access to entire classes of quantum systems that have previously only been accessible via optical spectroscopy or magnetic resonance measurements of large ensembles, if at all. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081986634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081986634</sourcerecordid><originalsourceid>FETCH-proquest_journals_30819866343</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRYMgKOodBlwXaqK1LkUUD-BeBjPVSJvRzGShp7eIB3D1F_-9_wdmbJ1bFPXS2pGZidzLsrTV2q5WbmzCFq4UKWELGD107HOLCfDxSIyXGyiDcBt8IYpKEKLSNaEGjl8-EXrOCtzAmxIXPnQUpW_7vWfGqLkDeYlSJ1MzbLAVmv1yYuaH_Wl3LPqnZybR851z6kU5u7JebOqqckv3H_UB7ipJEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081986634</pqid></control><display><type>article</type><title>A general and modular approach to solid-state integration and readout of zero-dimensional quantum systems</title><source>Free E- Journals</source><creator>Kavand, Marzieh ; Phillips, Zoe ; Koll, William H ; Hamilton, Morgan ; Perez-Hoyos, Ethel ; Greer, Rianna ; Ferdous Ara ; Pharis, Dan ; Mehdi Maleki Sanukesh ; Xu, Mingyu ; Taniguchi, Takashi ; Canfield, Paul ; Flatté, Michael E ; Freedman, Danna E ; Gupta, Jay ; Johnston-Halperin, Ezekiel</creator><creatorcontrib>Kavand, Marzieh ; Phillips, Zoe ; Koll, William H ; Hamilton, Morgan ; Perez-Hoyos, Ethel ; Greer, Rianna ; Ferdous Ara ; Pharis, Dan ; Mehdi Maleki Sanukesh ; Xu, Mingyu ; Taniguchi, Takashi ; Canfield, Paul ; Flatté, Michael E ; Freedman, Danna E ; Gupta, Jay ; Johnston-Halperin, Ezekiel</creatorcontrib><description>Electronic spectroscopy of zero-dimensional (0D) quantum systems, including point defects in solids, atomic states, and small molecules, is a critical tool for developing a fundamental understanding of these systems, with applications ranging from solid-state and molecular materials development to emerging technologies rooted in quantum information science. Toward this end, scanning tunneling spectroscopy (STS) has demonstrated atomic-scale sensitivity, but is not easily scalable for applications, whereas device-based approaches rely on embedding these systems within a solid-state tunnel junction (TJ) and are not generally applicable. Here we demonstrate an all-electrical readout mechanism for these quasi-0D states that is modular and general, dramatically expanding the phase space of accessible quantum systems and providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multi-layer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target quantum system (QS) in an MLG/hBN/QS/hBN/MLG heterostructure. This structure allows for electronic spectroscopy and readout of candidate quantum systems through a combination of Coulomb and spin-blockade, providing access to entire classes of quantum systems that have previously only been accessible via optical spectroscopy or magnetic resonance measurements of large ensembles, if at all.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accessibility ; Atomic states ; Boron nitride ; Electrical junctions ; Electron spin ; Graphene ; Heterostructures ; Magnetic resonance ; Modular equipment ; Modular systems ; Multilayers ; Point defects ; Quantum phenomena ; Quantum theory ; Solid state ; Spectrum analysis ; Tunnel junctions</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kavand, Marzieh</creatorcontrib><creatorcontrib>Phillips, Zoe</creatorcontrib><creatorcontrib>Koll, William H</creatorcontrib><creatorcontrib>Hamilton, Morgan</creatorcontrib><creatorcontrib>Perez-Hoyos, Ethel</creatorcontrib><creatorcontrib>Greer, Rianna</creatorcontrib><creatorcontrib>Ferdous Ara</creatorcontrib><creatorcontrib>Pharis, Dan</creatorcontrib><creatorcontrib>Mehdi Maleki Sanukesh</creatorcontrib><creatorcontrib>Xu, Mingyu</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Canfield, Paul</creatorcontrib><creatorcontrib>Flatté, Michael E</creatorcontrib><creatorcontrib>Freedman, Danna E</creatorcontrib><creatorcontrib>Gupta, Jay</creatorcontrib><creatorcontrib>Johnston-Halperin, Ezekiel</creatorcontrib><title>A general and modular approach to solid-state integration and readout of zero-dimensional quantum systems</title><title>arXiv.org</title><description>Electronic spectroscopy of zero-dimensional (0D) quantum systems, including point defects in solids, atomic states, and small molecules, is a critical tool for developing a fundamental understanding of these systems, with applications ranging from solid-state and molecular materials development to emerging technologies rooted in quantum information science. Toward this end, scanning tunneling spectroscopy (STS) has demonstrated atomic-scale sensitivity, but is not easily scalable for applications, whereas device-based approaches rely on embedding these systems within a solid-state tunnel junction (TJ) and are not generally applicable. Here we demonstrate an all-electrical readout mechanism for these quasi-0D states that is modular and general, dramatically expanding the phase space of accessible quantum systems and providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multi-layer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target quantum system (QS) in an MLG/hBN/QS/hBN/MLG heterostructure. This structure allows for electronic spectroscopy and readout of candidate quantum systems through a combination of Coulomb and spin-blockade, providing access to entire classes of quantum systems that have previously only been accessible via optical spectroscopy or magnetic resonance measurements of large ensembles, if at all.</description><subject>Accessibility</subject><subject>Atomic states</subject><subject>Boron nitride</subject><subject>Electrical junctions</subject><subject>Electron spin</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Magnetic resonance</subject><subject>Modular equipment</subject><subject>Modular systems</subject><subject>Multilayers</subject><subject>Point defects</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Solid state</subject><subject>Spectrum analysis</subject><subject>Tunnel junctions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUEKwjAQRYMgKOodBlwXaqK1LkUUD-BeBjPVSJvRzGShp7eIB3D1F_-9_wdmbJ1bFPXS2pGZidzLsrTV2q5WbmzCFq4UKWELGD107HOLCfDxSIyXGyiDcBt8IYpKEKLSNaEGjl8-EXrOCtzAmxIXPnQUpW_7vWfGqLkDeYlSJ1MzbLAVmv1yYuaH_Wl3LPqnZybR851z6kU5u7JebOqqckv3H_UB7ipJEQ</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Kavand, Marzieh</creator><creator>Phillips, Zoe</creator><creator>Koll, William H</creator><creator>Hamilton, Morgan</creator><creator>Perez-Hoyos, Ethel</creator><creator>Greer, Rianna</creator><creator>Ferdous Ara</creator><creator>Pharis, Dan</creator><creator>Mehdi Maleki Sanukesh</creator><creator>Xu, Mingyu</creator><creator>Taniguchi, Takashi</creator><creator>Canfield, Paul</creator><creator>Flatté, Michael E</creator><creator>Freedman, Danna E</creator><creator>Gupta, Jay</creator><creator>Johnston-Halperin, Ezekiel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240731</creationdate><title>A general and modular approach to solid-state integration and readout of zero-dimensional quantum systems</title><author>Kavand, Marzieh ; Phillips, Zoe ; Koll, William H ; Hamilton, Morgan ; Perez-Hoyos, Ethel ; Greer, Rianna ; Ferdous Ara ; Pharis, Dan ; Mehdi Maleki Sanukesh ; Xu, Mingyu ; Taniguchi, Takashi ; Canfield, Paul ; Flatté, Michael E ; Freedman, Danna E ; Gupta, Jay ; Johnston-Halperin, Ezekiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30819866343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Atomic states</topic><topic>Boron nitride</topic><topic>Electrical junctions</topic><topic>Electron spin</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Magnetic resonance</topic><topic>Modular equipment</topic><topic>Modular systems</topic><topic>Multilayers</topic><topic>Point defects</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Solid state</topic><topic>Spectrum analysis</topic><topic>Tunnel junctions</topic><toplevel>online_resources</toplevel><creatorcontrib>Kavand, Marzieh</creatorcontrib><creatorcontrib>Phillips, Zoe</creatorcontrib><creatorcontrib>Koll, William H</creatorcontrib><creatorcontrib>Hamilton, Morgan</creatorcontrib><creatorcontrib>Perez-Hoyos, Ethel</creatorcontrib><creatorcontrib>Greer, Rianna</creatorcontrib><creatorcontrib>Ferdous Ara</creatorcontrib><creatorcontrib>Pharis, Dan</creatorcontrib><creatorcontrib>Mehdi Maleki Sanukesh</creatorcontrib><creatorcontrib>Xu, Mingyu</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Canfield, Paul</creatorcontrib><creatorcontrib>Flatté, Michael E</creatorcontrib><creatorcontrib>Freedman, Danna E</creatorcontrib><creatorcontrib>Gupta, Jay</creatorcontrib><creatorcontrib>Johnston-Halperin, Ezekiel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavand, Marzieh</au><au>Phillips, Zoe</au><au>Koll, William H</au><au>Hamilton, Morgan</au><au>Perez-Hoyos, Ethel</au><au>Greer, Rianna</au><au>Ferdous Ara</au><au>Pharis, Dan</au><au>Mehdi Maleki Sanukesh</au><au>Xu, Mingyu</au><au>Taniguchi, Takashi</au><au>Canfield, Paul</au><au>Flatté, Michael E</au><au>Freedman, Danna E</au><au>Gupta, Jay</au><au>Johnston-Halperin, Ezekiel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A general and modular approach to solid-state integration and readout of zero-dimensional quantum systems</atitle><jtitle>arXiv.org</jtitle><date>2024-07-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Electronic spectroscopy of zero-dimensional (0D) quantum systems, including point defects in solids, atomic states, and small molecules, is a critical tool for developing a fundamental understanding of these systems, with applications ranging from solid-state and molecular materials development to emerging technologies rooted in quantum information science. Toward this end, scanning tunneling spectroscopy (STS) has demonstrated atomic-scale sensitivity, but is not easily scalable for applications, whereas device-based approaches rely on embedding these systems within a solid-state tunnel junction (TJ) and are not generally applicable. Here we demonstrate an all-electrical readout mechanism for these quasi-0D states that is modular and general, dramatically expanding the phase space of accessible quantum systems and providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multi-layer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target quantum system (QS) in an MLG/hBN/QS/hBN/MLG heterostructure. This structure allows for electronic spectroscopy and readout of candidate quantum systems through a combination of Coulomb and spin-blockade, providing access to entire classes of quantum systems that have previously only been accessible via optical spectroscopy or magnetic resonance measurements of large ensembles, if at all.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3081986634 |
source | Free E- Journals |
subjects | Accessibility Atomic states Boron nitride Electrical junctions Electron spin Graphene Heterostructures Magnetic resonance Modular equipment Modular systems Multilayers Point defects Quantum phenomena Quantum theory Solid state Spectrum analysis Tunnel junctions |
title | A general and modular approach to solid-state integration and readout of zero-dimensional quantum systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20general%20and%20modular%20approach%20to%20solid-state%20integration%20and%20readout%20of%20zero-dimensional%20quantum%20systems&rft.jtitle=arXiv.org&rft.au=Kavand,%20Marzieh&rft.date=2024-07-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081986634%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081986634&rft_id=info:pmid/&rfr_iscdi=true |