Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution

Investigating the solar magnetic field is crucial to understand the physical processes in the solar interior as well as their effects on the interplanetary environment. We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Francesco Pio Ramunno, Hyun-Jin, Jeong, Hackstein, Stefan, Csillaghy, André, Voloshynovskiy, Svyatoslav, Georgoulis, Manolis K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Francesco Pio Ramunno
Hyun-Jin, Jeong
Hackstein, Stefan
Csillaghy, André
Voloshynovskiy, Svyatoslav
Georgoulis, Manolis K
description Investigating the solar magnetic field is crucial to understand the physical processes in the solar interior as well as their effects on the interplanetary environment. We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation with Denoising Diffusion Probabilistic Models (DDPMs). Our approach combines "computer science metrics" for image quality and "physics metrics" for physical accuracy to evaluate model performance. The results indicate that DDPMs are effective in maintaining the structural integrity, the dynamic range of solar magnetic fields, the magnetic flux and other physical features such as the size of the active regions, surpassing traditional persistence models, also in flaring situation. We aim to use deep learning not only for visualisation but as an integrative and interactive tool for telescopes, enhancing our understanding of unexpected physical events like solar flares. Future studies will aim to integrate more diverse solar data to refine the accuracy and applicability of our generative model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081978192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081978192</sourcerecordid><originalsourceid>FETCH-proquest_journals_30819781923</originalsourceid><addsrcrecordid>eNqNir0KwjAURoMgWLTvEHAOpIm11VVSXZx0L0FuQ0rM1fz0-e3g4OjwcTicb0EKIWXF2p0QK1LGOHLOxb4RdS0Loq7aeEhogn6yhOxHj_QMHoJOdgLaYYCHjsl6Q3GgN3Q6UDWhy8mi35DloF2E8ss12XbqfrqwV8B3hpj6EXPwc-olb6tDM0_I_14fosk7Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081978192</pqid></control><display><type>article</type><title>Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution</title><source>Free E- Journals</source><creator>Francesco Pio Ramunno ; Hyun-Jin, Jeong ; Hackstein, Stefan ; Csillaghy, André ; Voloshynovskiy, Svyatoslav ; Georgoulis, Manolis K</creator><creatorcontrib>Francesco Pio Ramunno ; Hyun-Jin, Jeong ; Hackstein, Stefan ; Csillaghy, André ; Voloshynovskiy, Svyatoslav ; Georgoulis, Manolis K</creatorcontrib><description>Investigating the solar magnetic field is crucial to understand the physical processes in the solar interior as well as their effects on the interplanetary environment. We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation with Denoising Diffusion Probabilistic Models (DDPMs). Our approach combines "computer science metrics" for image quality and "physics metrics" for physical accuracy to evaluate model performance. The results indicate that DDPMs are effective in maintaining the structural integrity, the dynamic range of solar magnetic fields, the magnetic flux and other physical features such as the size of the active regions, surpassing traditional persistence models, also in flaring situation. We aim to use deep learning not only for visualisation but as an integrative and interactive tool for telescopes, enhancing our understanding of unexpected physical events like solar flares. Future studies will aim to integrate more diverse solar data to refine the accuracy and applicability of our generative model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Evolution ; Image enhancement ; Image quality ; Magnetic flux ; Probabilistic models ; Solar flares ; Solar interior ; Solar magnetic field ; Structural integrity</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Francesco Pio Ramunno</creatorcontrib><creatorcontrib>Hyun-Jin, Jeong</creatorcontrib><creatorcontrib>Hackstein, Stefan</creatorcontrib><creatorcontrib>Csillaghy, André</creatorcontrib><creatorcontrib>Voloshynovskiy, Svyatoslav</creatorcontrib><creatorcontrib>Georgoulis, Manolis K</creatorcontrib><title>Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution</title><title>arXiv.org</title><description>Investigating the solar magnetic field is crucial to understand the physical processes in the solar interior as well as their effects on the interplanetary environment. We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation with Denoising Diffusion Probabilistic Models (DDPMs). Our approach combines "computer science metrics" for image quality and "physics metrics" for physical accuracy to evaluate model performance. The results indicate that DDPMs are effective in maintaining the structural integrity, the dynamic range of solar magnetic fields, the magnetic flux and other physical features such as the size of the active regions, surpassing traditional persistence models, also in flaring situation. We aim to use deep learning not only for visualisation but as an integrative and interactive tool for telescopes, enhancing our understanding of unexpected physical events like solar flares. Future studies will aim to integrate more diverse solar data to refine the accuracy and applicability of our generative model.</description><subject>Accuracy</subject><subject>Evolution</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Magnetic flux</subject><subject>Probabilistic models</subject><subject>Solar flares</subject><subject>Solar interior</subject><subject>Solar magnetic field</subject><subject>Structural integrity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KwjAURoMgWLTvEHAOpIm11VVSXZx0L0FuQ0rM1fz0-e3g4OjwcTicb0EKIWXF2p0QK1LGOHLOxb4RdS0Loq7aeEhogn6yhOxHj_QMHoJOdgLaYYCHjsl6Q3GgN3Q6UDWhy8mi35DloF2E8ss12XbqfrqwV8B3hpj6EXPwc-olb6tDM0_I_14fosk7Pw</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Francesco Pio Ramunno</creator><creator>Hyun-Jin, Jeong</creator><creator>Hackstein, Stefan</creator><creator>Csillaghy, André</creator><creator>Voloshynovskiy, Svyatoslav</creator><creator>Georgoulis, Manolis K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240716</creationdate><title>Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution</title><author>Francesco Pio Ramunno ; Hyun-Jin, Jeong ; Hackstein, Stefan ; Csillaghy, André ; Voloshynovskiy, Svyatoslav ; Georgoulis, Manolis K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30819781923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Evolution</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Magnetic flux</topic><topic>Probabilistic models</topic><topic>Solar flares</topic><topic>Solar interior</topic><topic>Solar magnetic field</topic><topic>Structural integrity</topic><toplevel>online_resources</toplevel><creatorcontrib>Francesco Pio Ramunno</creatorcontrib><creatorcontrib>Hyun-Jin, Jeong</creatorcontrib><creatorcontrib>Hackstein, Stefan</creatorcontrib><creatorcontrib>Csillaghy, André</creatorcontrib><creatorcontrib>Voloshynovskiy, Svyatoslav</creatorcontrib><creatorcontrib>Georgoulis, Manolis K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francesco Pio Ramunno</au><au>Hyun-Jin, Jeong</au><au>Hackstein, Stefan</au><au>Csillaghy, André</au><au>Voloshynovskiy, Svyatoslav</au><au>Georgoulis, Manolis K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution</atitle><jtitle>arXiv.org</jtitle><date>2024-07-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Investigating the solar magnetic field is crucial to understand the physical processes in the solar interior as well as their effects on the interplanetary environment. We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation with Denoising Diffusion Probabilistic Models (DDPMs). Our approach combines "computer science metrics" for image quality and "physics metrics" for physical accuracy to evaluate model performance. The results indicate that DDPMs are effective in maintaining the structural integrity, the dynamic range of solar magnetic fields, the magnetic flux and other physical features such as the size of the active regions, surpassing traditional persistence models, also in flaring situation. We aim to use deep learning not only for visualisation but as an integrative and interactive tool for telescopes, enhancing our understanding of unexpected physical events like solar flares. Future studies will aim to integrate more diverse solar data to refine the accuracy and applicability of our generative model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3081978192
source Free E- Journals
subjects Accuracy
Evolution
Image enhancement
Image quality
Magnetic flux
Probabilistic models
Solar flares
Solar interior
Solar magnetic field
Structural integrity
title Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Magnetogram-to-Magnetogram:%20Generative%20Forecasting%20of%20Solar%20Evolution&rft.jtitle=arXiv.org&rft.au=Francesco%20Pio%20Ramunno&rft.date=2024-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081978192%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081978192&rft_id=info:pmid/&rfr_iscdi=true