Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness
Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mukhopadhyay, Srija Qidwai, Adnan Garimella, Aparna Ramu, Pritika Gupta, Vivek Roth, Dan |
description | Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081977115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081977115</sourcerecordid><originalsourceid>FETCH-proquest_journals_30819771153</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCIr6DgfOQppYqy4ireKgi1TXEutpK-WiubTQt1fBB3D6h__riL7SOpjMp0r1xIj5IaVUs0iFoe6L_ETONFiVdAdfIKSu9sUSEgvn_YHBoamqFk50Rcfe0BXiwjjPK1hDgviEpGwQSvIWYktcskfKW_jCo73U7AmZh6J7MxXj6NeBGG83abybPJ191cg-e9ja0WdlWs6DRRQFQaj_U28v4kUB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081977115</pqid></control><display><type>article</type><title>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</title><source>Free E- Journals</source><creator>Mukhopadhyay, Srija ; Qidwai, Adnan ; Garimella, Aparna ; Ramu, Pritika ; Gupta, Vivek ; Roth, Dan</creator><creatorcontrib>Mukhopadhyay, Srija ; Qidwai, Adnan ; Garimella, Aparna ; Ramu, Pritika ; Gupta, Vivek ; Roth, Dan</creatorcontrib><description>Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Charts ; Questions ; Robustness ; State-of-the-art reviews ; Visual fields</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mukhopadhyay, Srija</creatorcontrib><creatorcontrib>Qidwai, Adnan</creatorcontrib><creatorcontrib>Garimella, Aparna</creatorcontrib><creatorcontrib>Ramu, Pritika</creatorcontrib><creatorcontrib>Gupta, Vivek</creatorcontrib><creatorcontrib>Roth, Dan</creatorcontrib><title>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</title><title>arXiv.org</title><description>Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.</description><subject>Charts</subject><subject>Questions</subject><subject>Robustness</subject><subject>State-of-the-art reviews</subject><subject>Visual fields</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCIr6DgfOQppYqy4ireKgi1TXEutpK-WiubTQt1fBB3D6h__riL7SOpjMp0r1xIj5IaVUs0iFoe6L_ETONFiVdAdfIKSu9sUSEgvn_YHBoamqFk50Rcfe0BXiwjjPK1hDgviEpGwQSvIWYktcskfKW_jCo73U7AmZh6J7MxXj6NeBGG83abybPJ191cg-e9ja0WdlWs6DRRQFQaj_U28v4kUB</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Mukhopadhyay, Srija</creator><creator>Qidwai, Adnan</creator><creator>Garimella, Aparna</creator><creator>Ramu, Pritika</creator><creator>Gupta, Vivek</creator><creator>Roth, Dan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241004</creationdate><title>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</title><author>Mukhopadhyay, Srija ; Qidwai, Adnan ; Garimella, Aparna ; Ramu, Pritika ; Gupta, Vivek ; Roth, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30819771153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charts</topic><topic>Questions</topic><topic>Robustness</topic><topic>State-of-the-art reviews</topic><topic>Visual fields</topic><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, Srija</creatorcontrib><creatorcontrib>Qidwai, Adnan</creatorcontrib><creatorcontrib>Garimella, Aparna</creatorcontrib><creatorcontrib>Ramu, Pritika</creatorcontrib><creatorcontrib>Gupta, Vivek</creatorcontrib><creatorcontrib>Roth, Dan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, Srija</au><au>Qidwai, Adnan</au><au>Garimella, Aparna</au><au>Ramu, Pritika</au><au>Gupta, Vivek</au><au>Roth, Dan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</atitle><jtitle>arXiv.org</jtitle><date>2024-10-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3081977115 |
source | Free E- Journals |
subjects | Charts Questions Robustness State-of-the-art reviews Visual fields |
title | Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unraveling%20the%20Truth:%20Do%20VLMs%20really%20Understand%20Charts?%20A%20Deep%20Dive%20into%20Consistency%20and%20Robustness&rft.jtitle=arXiv.org&rft.au=Mukhopadhyay,%20Srija&rft.date=2024-10-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081977115%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081977115&rft_id=info:pmid/&rfr_iscdi=true |