Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness

Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Mukhopadhyay, Srija, Qidwai, Adnan, Garimella, Aparna, Ramu, Pritika, Gupta, Vivek, Roth, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mukhopadhyay, Srija
Qidwai, Adnan
Garimella, Aparna
Ramu, Pritika
Gupta, Vivek
Roth, Dan
description Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081977115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081977115</sourcerecordid><originalsourceid>FETCH-proquest_journals_30819771153</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCIr6DgfOQppYqy4ireKgi1TXEutpK-WiubTQt1fBB3D6h__riL7SOpjMp0r1xIj5IaVUs0iFoe6L_ETONFiVdAdfIKSu9sUSEgvn_YHBoamqFk50Rcfe0BXiwjjPK1hDgviEpGwQSvIWYktcskfKW_jCo73U7AmZh6J7MxXj6NeBGG83abybPJ191cg-e9ja0WdlWs6DRRQFQaj_U28v4kUB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081977115</pqid></control><display><type>article</type><title>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</title><source>Free E- Journals</source><creator>Mukhopadhyay, Srija ; Qidwai, Adnan ; Garimella, Aparna ; Ramu, Pritika ; Gupta, Vivek ; Roth, Dan</creator><creatorcontrib>Mukhopadhyay, Srija ; Qidwai, Adnan ; Garimella, Aparna ; Ramu, Pritika ; Gupta, Vivek ; Roth, Dan</creatorcontrib><description>Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Charts ; Questions ; Robustness ; State-of-the-art reviews ; Visual fields</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mukhopadhyay, Srija</creatorcontrib><creatorcontrib>Qidwai, Adnan</creatorcontrib><creatorcontrib>Garimella, Aparna</creatorcontrib><creatorcontrib>Ramu, Pritika</creatorcontrib><creatorcontrib>Gupta, Vivek</creatorcontrib><creatorcontrib>Roth, Dan</creatorcontrib><title>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</title><title>arXiv.org</title><description>Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.</description><subject>Charts</subject><subject>Questions</subject><subject>Robustness</subject><subject>State-of-the-art reviews</subject><subject>Visual fields</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOEgCIr6DgfOQppYqy4ireKgi1TXEutpK-WiubTQt1fBB3D6h__riL7SOpjMp0r1xIj5IaVUs0iFoe6L_ETONFiVdAdfIKSu9sUSEgvn_YHBoamqFk50Rcfe0BXiwjjPK1hDgviEpGwQSvIWYktcskfKW_jCo73U7AmZh6J7MxXj6NeBGG83abybPJ191cg-e9ja0WdlWs6DRRQFQaj_U28v4kUB</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Mukhopadhyay, Srija</creator><creator>Qidwai, Adnan</creator><creator>Garimella, Aparna</creator><creator>Ramu, Pritika</creator><creator>Gupta, Vivek</creator><creator>Roth, Dan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241004</creationdate><title>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</title><author>Mukhopadhyay, Srija ; Qidwai, Adnan ; Garimella, Aparna ; Ramu, Pritika ; Gupta, Vivek ; Roth, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30819771153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charts</topic><topic>Questions</topic><topic>Robustness</topic><topic>State-of-the-art reviews</topic><topic>Visual fields</topic><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, Srija</creatorcontrib><creatorcontrib>Qidwai, Adnan</creatorcontrib><creatorcontrib>Garimella, Aparna</creatorcontrib><creatorcontrib>Ramu, Pritika</creatorcontrib><creatorcontrib>Gupta, Vivek</creatorcontrib><creatorcontrib>Roth, Dan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, Srija</au><au>Qidwai, Adnan</au><au>Garimella, Aparna</au><au>Ramu, Pritika</au><au>Gupta, Vivek</au><au>Roth, Dan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness</atitle><jtitle>arXiv.org</jtitle><date>2024-10-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3081977115
source Free E- Journals
subjects Charts
Questions
Robustness
State-of-the-art reviews
Visual fields
title Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unraveling%20the%20Truth:%20Do%20VLMs%20really%20Understand%20Charts?%20A%20Deep%20Dive%20into%20Consistency%20and%20Robustness&rft.jtitle=arXiv.org&rft.au=Mukhopadhyay,%20Srija&rft.date=2024-10-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081977115%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081977115&rft_id=info:pmid/&rfr_iscdi=true