RETRACTED ARTICLE: A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system

Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2019-05, Vol.31 (5), p.1665-1677
Hauptverfasser: Ai, Yi, Li, Zongping, Gan, Mi, Zhang, Yunpeng, Yu, Daben, Chen, Wei, Ju, Yanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1677
container_issue 5
container_start_page 1665
container_title Neural computing & applications
container_volume 31
creator Ai, Yi
Li, Zongping
Gan, Mi
Zhang, Yunpeng
Yu, Daben
Chen, Wei
Ju, Yanni
description Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network (conv-LSTM), to address the spatial dependences and temporal dependences. The spatiotemporal variables including number of bicycles in area, distribution uniformity, usage distribution, and time of day as a spatiotemporal sequence in which both the input and the prediction target are spatiotemporal 3D tensors within one end-to-end learning architecture. Experiments show that conv-LSTM outperforms LSTM on capturing spatiotemporal correlations.
doi_str_mv 10.1007/s00521-018-3470-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081971116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081971116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1799-c4bcb04cdad311184397664576bb7f3f4f41eddbdab2e4d1daf2721b180c3aa83</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mywYzdOuFUlPKRKSFU5W36Fpk3j4E0PPfLPcVQkTpxW2p1vVjMI3TJ6zyiVD0DpLGOEsoJwISkpz9CECc4Jp7PiHE1oKdI1F_wSXQFsKaUiL2YT9L2q1qv5Yl094flq_bZYVo94jp33PW69jl3TfWLd9zFou8Ghw7AJcSCDj3sMvR6aMPh9H6JusWtgiI05pF2H6xC91TCMeKixC3bXegBsmp0nsNFxPMAREn2NLmrdgr_5nVP08VytF69k-f7ytpgviWWyLIkVxhoqrNOOM8YKwUuZ52Imc2NkzWtRC-adM06bzAvHnK4zmTHDCmq51gWforuTbwrzdfAwqG04xC69VJwWrJTJNU8qdlLZGACir1Ufm72OR8WoGptWp6ZValqNTasyMdmJgX7M5eOf8__QDxlbgkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081971116</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ai, Yi ; Li, Zongping ; Gan, Mi ; Zhang, Yunpeng ; Yu, Daben ; Chen, Wei ; Ju, Yanni</creator><creatorcontrib>Ai, Yi ; Li, Zongping ; Gan, Mi ; Zhang, Yunpeng ; Yu, Daben ; Chen, Wei ; Ju, Yanni</creatorcontrib><description>Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network (conv-LSTM), to address the spatial dependences and temporal dependences. The spatiotemporal variables including number of bicycles in area, distribution uniformity, usage distribution, and time of day as a spatiotemporal sequence in which both the input and the prediction target are spatiotemporal 3D tensors within one end-to-end learning architecture. Experiments show that conv-LSTM outperforms LSTM on capturing spatiotemporal correlations.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3470-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Bicycles ; Bicycling ; Business models ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Forecasting ; Image Processing and Computer Vision ; Neural networks ; Probability and Statistics in Computer Science ; S.I.: Emerging Intelligent Algorithms for Edge-of-Things Computing ; Supply &amp; demand ; Tensors ; Time of use</subject><ispartof>Neural computing &amp; applications, 2019-05, Vol.31 (5), p.1665-1677</ispartof><rights>The Natural Computing Applications Forum 2018. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1799-c4bcb04cdad311184397664576bb7f3f4f41eddbdab2e4d1daf2721b180c3aa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3470-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3470-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ai, Yi</creatorcontrib><creatorcontrib>Li, Zongping</creatorcontrib><creatorcontrib>Gan, Mi</creatorcontrib><creatorcontrib>Zhang, Yunpeng</creatorcontrib><creatorcontrib>Yu, Daben</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Ju, Yanni</creatorcontrib><title>RETRACTED ARTICLE: A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network (conv-LSTM), to address the spatial dependences and temporal dependences. The spatiotemporal variables including number of bicycles in area, distribution uniformity, usage distribution, and time of day as a spatiotemporal sequence in which both the input and the prediction target are spatiotemporal 3D tensors within one end-to-end learning architecture. Experiments show that conv-LSTM outperforms LSTM on capturing spatiotemporal correlations.</description><subject>Artificial Intelligence</subject><subject>Bicycles</subject><subject>Bicycling</subject><subject>Business models</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Forecasting</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.I.: Emerging Intelligent Algorithms for Edge-of-Things Computing</subject><subject>Supply &amp; demand</subject><subject>Tensors</subject><subject>Time of use</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mywYzdOuFUlPKRKSFU5W36Fpk3j4E0PPfLPcVQkTpxW2p1vVjMI3TJ6zyiVD0DpLGOEsoJwISkpz9CECc4Jp7PiHE1oKdI1F_wSXQFsKaUiL2YT9L2q1qv5Yl094flq_bZYVo94jp33PW69jl3TfWLd9zFou8Ghw7AJcSCDj3sMvR6aMPh9H6JusWtgiI05pF2H6xC91TCMeKixC3bXegBsmp0nsNFxPMAREn2NLmrdgr_5nVP08VytF69k-f7ytpgviWWyLIkVxhoqrNOOM8YKwUuZ52Imc2NkzWtRC-adM06bzAvHnK4zmTHDCmq51gWforuTbwrzdfAwqG04xC69VJwWrJTJNU8qdlLZGACir1Ufm72OR8WoGptWp6ZValqNTasyMdmJgX7M5eOf8__QDxlbgkg</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>Ai, Yi</creator><creator>Li, Zongping</creator><creator>Gan, Mi</creator><creator>Zhang, Yunpeng</creator><creator>Yu, Daben</creator><creator>Chen, Wei</creator><creator>Ju, Yanni</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190503</creationdate><title>RETRACTED ARTICLE: A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system</title><author>Ai, Yi ; Li, Zongping ; Gan, Mi ; Zhang, Yunpeng ; Yu, Daben ; Chen, Wei ; Ju, Yanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1799-c4bcb04cdad311184397664576bb7f3f4f41eddbdab2e4d1daf2721b180c3aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Bicycles</topic><topic>Bicycling</topic><topic>Business models</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Forecasting</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.I.: Emerging Intelligent Algorithms for Edge-of-Things Computing</topic><topic>Supply &amp; demand</topic><topic>Tensors</topic><topic>Time of use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Yi</creatorcontrib><creatorcontrib>Li, Zongping</creatorcontrib><creatorcontrib>Gan, Mi</creatorcontrib><creatorcontrib>Zhang, Yunpeng</creatorcontrib><creatorcontrib>Yu, Daben</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Ju, Yanni</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Yi</au><au>Li, Zongping</au><au>Gan, Mi</au><au>Zhang, Yunpeng</au><au>Yu, Daben</au><au>Chen, Wei</au><au>Ju, Yanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2019-05-03</date><risdate>2019</risdate><volume>31</volume><issue>5</issue><spage>1665</spage><epage>1677</epage><pages>1665-1677</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network (conv-LSTM), to address the spatial dependences and temporal dependences. The spatiotemporal variables including number of bicycles in area, distribution uniformity, usage distribution, and time of day as a spatiotemporal sequence in which both the input and the prediction target are spatiotemporal 3D tensors within one end-to-end learning architecture. Experiments show that conv-LSTM outperforms LSTM on capturing spatiotemporal correlations.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3470-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2019-05, Vol.31 (5), p.1665-1677
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_3081971116
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Bicycles
Bicycling
Business models
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Forecasting
Image Processing and Computer Vision
Neural networks
Probability and Statistics in Computer Science
S.I.: Emerging Intelligent Algorithms for Edge-of-Things Computing
Supply & demand
Tensors
Time of use
title RETRACTED ARTICLE: A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20A%20deep%20learning%20approach%20on%20short-term%20spatiotemporal%20distribution%20forecasting%20of%20dockless%20bike-sharing%20system&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ai,%20Yi&rft.date=2019-05-03&rft.volume=31&rft.issue=5&rft.spage=1665&rft.epage=1677&rft.pages=1665-1677&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3470-9&rft_dat=%3Cproquest_cross%3E3081971116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081971116&rft_id=info:pmid/&rfr_iscdi=true