Optimal scenario for road evacuation in an urban environment

How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2024-08, Vol.75 (4), Article 146
Hauptverfasser: Bestard, Mickael, Franck, Emmanuel, Navoret, Laurent, Privat, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 75
creator Bestard, Mickael
Franck, Emmanuel
Navoret, Laurent
Privat, Yannick
description How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.
doi_str_mv 10.1007/s00033-024-02278-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081736561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081736561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-125a91096a43dfedb4ac3e071375fc8f71d38030b2d8d459f0f182bb09704e603</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJJm0a8CLiFyzsRc8hbRPpspusSbvgvzdawZuHmTnM-87HQ8glh2sOoG4yACAyELKEUA3TR2TBpQCmAfUxWQBIyUqnOiVnOW-KXHHABbld78dhZ7c0dy7YNETqY6Ip2p66g-0mOw4x0CFQG-iU2pJdOAwphp0L4zk58Xab3cVvXZK3x4fX-2e2Wj-93N-tWCcARsZFZTUHXVuJvXd9K22HrhyAqvJd4xXvsQGEVvRNLyvtwfNGtC1oBdLVgEtyNc_dp_gxuTyaTZxSKCsNQsMV1lXNi0rMqi7FnJPzZp_Ka-nTcDDflMxMyRRK5oeS0cWEsykXcXh36W_0P64vcVpo9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081736561</pqid></control><display><type>article</type><title>Optimal scenario for road evacuation in an urban environment</title><source>Springer Nature - Complete Springer Journals</source><creator>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creator><creatorcontrib>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creatorcontrib><description>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-024-02278-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Emergency vehicles ; Engineering ; Functional equations ; Mathematical Methods in Physics ; Optimal control ; Optimization ; Roads ; Source code ; Theoretical and Applied Mechanics ; Traffic ; Traffic control ; Traffic models ; Urban environments</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2024-08, Vol.75 (4), Article 146</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-125a91096a43dfedb4ac3e071375fc8f71d38030b2d8d459f0f182bb09704e603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-024-02278-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-024-02278-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><title>Optimal scenario for road evacuation in an urban environment</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</description><subject>Algorithms</subject><subject>Emergency vehicles</subject><subject>Engineering</subject><subject>Functional equations</subject><subject>Mathematical Methods in Physics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Roads</subject><subject>Source code</subject><subject>Theoretical and Applied Mechanics</subject><subject>Traffic</subject><subject>Traffic control</subject><subject>Traffic models</subject><subject>Urban environments</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJJm0a8CLiFyzsRc8hbRPpspusSbvgvzdawZuHmTnM-87HQ8glh2sOoG4yACAyELKEUA3TR2TBpQCmAfUxWQBIyUqnOiVnOW-KXHHABbld78dhZ7c0dy7YNETqY6Ip2p66g-0mOw4x0CFQG-iU2pJdOAwphp0L4zk58Xab3cVvXZK3x4fX-2e2Wj-93N-tWCcARsZFZTUHXVuJvXd9K22HrhyAqvJd4xXvsQGEVvRNLyvtwfNGtC1oBdLVgEtyNc_dp_gxuTyaTZxSKCsNQsMV1lXNi0rMqi7FnJPzZp_Ka-nTcDDflMxMyRRK5oeS0cWEsykXcXh36W_0P64vcVpo9w</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bestard, Mickael</creator><creator>Franck, Emmanuel</creator><creator>Navoret, Laurent</creator><creator>Privat, Yannick</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Optimal scenario for road evacuation in an urban environment</title><author>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-125a91096a43dfedb4ac3e071375fc8f71d38030b2d8d459f0f182bb09704e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Emergency vehicles</topic><topic>Engineering</topic><topic>Functional equations</topic><topic>Mathematical Methods in Physics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Roads</topic><topic>Source code</topic><topic>Theoretical and Applied Mechanics</topic><topic>Traffic</topic><topic>Traffic control</topic><topic>Traffic models</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bestard, Mickael</au><au>Franck, Emmanuel</au><au>Navoret, Laurent</au><au>Privat, Yannick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal scenario for road evacuation in an urban environment</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>75</volume><issue>4</issue><artnum>146</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-024-02278-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2024-08, Vol.75 (4), Article 146
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_3081736561
source Springer Nature - Complete Springer Journals
subjects Algorithms
Emergency vehicles
Engineering
Functional equations
Mathematical Methods in Physics
Optimal control
Optimization
Roads
Source code
Theoretical and Applied Mechanics
Traffic
Traffic control
Traffic models
Urban environments
title Optimal scenario for road evacuation in an urban environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20scenario%20for%20road%20evacuation%20in%20an%20urban%20environment&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Bestard,%20Mickael&rft.date=2024-08-01&rft.volume=75&rft.issue=4&rft.artnum=146&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-024-02278-9&rft_dat=%3Cproquest_cross%3E3081736561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081736561&rft_id=info:pmid/&rfr_iscdi=true