Optimal scenario for road evacuation in an urban environment
How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, se...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2024-08, Vol.75 (4), Article 146 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 75 |
creator | Bestard, Mickael Franck, Emmanuel Navoret, Laurent Privat, Yannick |
description | How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language. |
doi_str_mv | 10.1007/s00033-024-02278-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081736561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081736561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-125a91096a43dfedb4ac3e071375fc8f71d38030b2d8d459f0f182bb09704e603</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJJm0a8CLiFyzsRc8hbRPpspusSbvgvzdawZuHmTnM-87HQ8glh2sOoG4yACAyELKEUA3TR2TBpQCmAfUxWQBIyUqnOiVnOW-KXHHABbld78dhZ7c0dy7YNETqY6Ip2p66g-0mOw4x0CFQG-iU2pJdOAwphp0L4zk58Xab3cVvXZK3x4fX-2e2Wj-93N-tWCcARsZFZTUHXVuJvXd9K22HrhyAqvJd4xXvsQGEVvRNLyvtwfNGtC1oBdLVgEtyNc_dp_gxuTyaTZxSKCsNQsMV1lXNi0rMqi7FnJPzZp_Ka-nTcDDflMxMyRRK5oeS0cWEsykXcXh36W_0P64vcVpo9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081736561</pqid></control><display><type>article</type><title>Optimal scenario for road evacuation in an urban environment</title><source>Springer Nature - Complete Springer Journals</source><creator>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creator><creatorcontrib>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creatorcontrib><description>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-024-02278-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Emergency vehicles ; Engineering ; Functional equations ; Mathematical Methods in Physics ; Optimal control ; Optimization ; Roads ; Source code ; Theoretical and Applied Mechanics ; Traffic ; Traffic control ; Traffic models ; Urban environments</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2024-08, Vol.75 (4), Article 146</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-125a91096a43dfedb4ac3e071375fc8f71d38030b2d8d459f0f182bb09704e603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-024-02278-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-024-02278-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><title>Optimal scenario for road evacuation in an urban environment</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</description><subject>Algorithms</subject><subject>Emergency vehicles</subject><subject>Engineering</subject><subject>Functional equations</subject><subject>Mathematical Methods in Physics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Roads</subject><subject>Source code</subject><subject>Theoretical and Applied Mechanics</subject><subject>Traffic</subject><subject>Traffic control</subject><subject>Traffic models</subject><subject>Urban environments</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJJm0a8CLiFyzsRc8hbRPpspusSbvgvzdawZuHmTnM-87HQ8glh2sOoG4yACAyELKEUA3TR2TBpQCmAfUxWQBIyUqnOiVnOW-KXHHABbld78dhZ7c0dy7YNETqY6Ip2p66g-0mOw4x0CFQG-iU2pJdOAwphp0L4zk58Xab3cVvXZK3x4fX-2e2Wj-93N-tWCcARsZFZTUHXVuJvXd9K22HrhyAqvJd4xXvsQGEVvRNLyvtwfNGtC1oBdLVgEtyNc_dp_gxuTyaTZxSKCsNQsMV1lXNi0rMqi7FnJPzZp_Ka-nTcDDflMxMyRRK5oeS0cWEsykXcXh36W_0P64vcVpo9w</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bestard, Mickael</creator><creator>Franck, Emmanuel</creator><creator>Navoret, Laurent</creator><creator>Privat, Yannick</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Optimal scenario for road evacuation in an urban environment</title><author>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-125a91096a43dfedb4ac3e071375fc8f71d38030b2d8d459f0f182bb09704e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Emergency vehicles</topic><topic>Engineering</topic><topic>Functional equations</topic><topic>Mathematical Methods in Physics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Roads</topic><topic>Source code</topic><topic>Theoretical and Applied Mechanics</topic><topic>Traffic</topic><topic>Traffic control</topic><topic>Traffic models</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bestard, Mickael</au><au>Franck, Emmanuel</au><au>Navoret, Laurent</au><au>Privat, Yannick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal scenario for road evacuation in an urban environment</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>75</volume><issue>4</issue><artnum>146</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-024-02278-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2024-08, Vol.75 (4), Article 146 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_3081736561 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Emergency vehicles Engineering Functional equations Mathematical Methods in Physics Optimal control Optimization Roads Source code Theoretical and Applied Mechanics Traffic Traffic control Traffic models Urban environments |
title | Optimal scenario for road evacuation in an urban environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20scenario%20for%20road%20evacuation%20in%20an%20urban%20environment&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Bestard,%20Mickael&rft.date=2024-08-01&rft.volume=75&rft.issue=4&rft.artnum=146&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-024-02278-9&rft_dat=%3Cproquest_cross%3E3081736561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081736561&rft_id=info:pmid/&rfr_iscdi=true |