Catalytic Depolymerization of Lignin into Aromatic Monomers over Ru-Ni/TiO2 Catalysts
Lignin, a natural hydrocarbon polymer, can be converted into aromatic monomers via catalytic depolymerization. This study focuses on the lignin depolymerization into aromatic monomers through hydrogenolysis using bimetallic Ru-Ni supported on TiO2. TiO2 synthesis involves the hydrolysis of titanium...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2024-06, Vol.1359 (1), p.012032 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 012032 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 1359 |
creator | Idrus, A Rahmandari, S Ramadhoni, B F Maryati, Y Dwiatmoko, A A Agustian, E Widjaya, R R |
description | Lignin, a natural hydrocarbon polymer, can be converted into aromatic monomers via catalytic depolymerization. This study focuses on the lignin depolymerization into aromatic monomers through hydrogenolysis using bimetallic Ru-Ni supported on TiO2. TiO2 synthesis involves the hydrolysis of titanium alkoxide followed by modification with H3PO4:HNO3. TiO2 was impregnated with Ru and Ni at various ratios (5:0, 4:1, 2.5:2.5, 1:4, and 0:5). The characterization was performed using NH3 Temperature-Programmed Desorption (NH3–TPD), N2 physisorption, XRF, XRD, H2–TPR, and SEM analyses. XRD confirmed the presence of anatase TiO2 at 2θ = 25.28°, 38.02°, and 38.33°, while Ru was dispersed in TiO2, as supported by the SEM and XRF results. N2 physisorption showed a decrease in the surface area by 20.1–40.3 m2/g, with mesoporous characteristics (pore size: 1.7-24.4 nm) after impregnation. NH3-TPD results indicate that the metals ratio influences the acidity of the catalyst. GC-MS analysis of the depolymerization reaction for aromatic monomers showed optimal results over the Ru4Ni1/TiO2 catalyst, demonstrating selectivity and yield of 42.2% and 71 mg/g, respectively. This study highlights a promising avenue for lignin depolymerization through efficient catalyst design and process optimization. |
doi_str_mv | 10.1088/1755-1315/1359/1/012032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3081717688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081717688</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1068-a2d7b6466180d029f7c72af674935bf3c13f0aad00be41b8738c8e5d4b3b35993</originalsourceid><addsrcrecordid>eNptkN9LwzAQgIMoOKd_gwGffKi9a9omfRxzU2E60O05pG0iGVtTm06Yf70tlYng0x3cd78-Qq4R7hCECJEnSYAMkxBZkoUYAkbAohMyOlZOjznwc3Lh_QYg5THLRmQ9Va3aHlpb0Htdu-1hpxv7pVrrKuoMXdj3ylbUVq2jk8btVA8-u8p1mKfuUzf0dR-82HBllxEdZvnWX5Izo7ZeX_3EMVnPZ6vpY7BYPjxNJ4vAIqQiUFHJ8zROUxRQQpQZXvBIme60jCW5YQUyA0qVALmOMReciULopIxzlne_ZmxMboa5deM-9tq3cuP2TdWtlAwEcuSpEB11O1DW1b_AbPYme2MS5WBM1qXpWPYPiyB717K3KHujfzvZNy6pb0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081717688</pqid></control><display><type>article</type><title>Catalytic Depolymerization of Lignin into Aromatic Monomers over Ru-Ni/TiO2 Catalysts</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><creator>Idrus, A ; Rahmandari, S ; Ramadhoni, B F ; Maryati, Y ; Dwiatmoko, A A ; Agustian, E ; Widjaya, R R</creator><creatorcontrib>Idrus, A ; Rahmandari, S ; Ramadhoni, B F ; Maryati, Y ; Dwiatmoko, A A ; Agustian, E ; Widjaya, R R</creatorcontrib><description>Lignin, a natural hydrocarbon polymer, can be converted into aromatic monomers via catalytic depolymerization. This study focuses on the lignin depolymerization into aromatic monomers through hydrogenolysis using bimetallic Ru-Ni supported on TiO2. TiO2 synthesis involves the hydrolysis of titanium alkoxide followed by modification with H3PO4:HNO3. TiO2 was impregnated with Ru and Ni at various ratios (5:0, 4:1, 2.5:2.5, 1:4, and 0:5). The characterization was performed using NH3 Temperature-Programmed Desorption (NH3–TPD), N2 physisorption, XRF, XRD, H2–TPR, and SEM analyses. XRD confirmed the presence of anatase TiO2 at 2θ = 25.28°, 38.02°, and 38.33°, while Ru was dispersed in TiO2, as supported by the SEM and XRF results. N2 physisorption showed a decrease in the surface area by 20.1–40.3 m2/g, with mesoporous characteristics (pore size: 1.7-24.4 nm) after impregnation. NH3-TPD results indicate that the metals ratio influences the acidity of the catalyst. GC-MS analysis of the depolymerization reaction for aromatic monomers showed optimal results over the Ru4Ni1/TiO2 catalyst, demonstrating selectivity and yield of 42.2% and 71 mg/g, respectively. This study highlights a promising avenue for lignin depolymerization through efficient catalyst design and process optimization.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1359/1/012032</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acidity ; Ammonia ; Anatase ; Aromatic hydrocarbons ; Bimetals ; Catalysts ; Catalytic converters ; Chemical synthesis ; Depolymerization ; Design optimization ; Hydrogenolysis ; Lignin ; Metals ; Monomers ; Polymers ; Pore size ; Titanium ; Titanium dioxide</subject><ispartof>IOP conference series. Earth and environmental science, 2024-06, Vol.1359 (1), p.012032</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/1359/1/012032/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27929,27930,38873,38895,53845,53872</link.rule.ids></links><search><creatorcontrib>Idrus, A</creatorcontrib><creatorcontrib>Rahmandari, S</creatorcontrib><creatorcontrib>Ramadhoni, B F</creatorcontrib><creatorcontrib>Maryati, Y</creatorcontrib><creatorcontrib>Dwiatmoko, A A</creatorcontrib><creatorcontrib>Agustian, E</creatorcontrib><creatorcontrib>Widjaya, R R</creatorcontrib><title>Catalytic Depolymerization of Lignin into Aromatic Monomers over Ru-Ni/TiO2 Catalysts</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Lignin, a natural hydrocarbon polymer, can be converted into aromatic monomers via catalytic depolymerization. This study focuses on the lignin depolymerization into aromatic monomers through hydrogenolysis using bimetallic Ru-Ni supported on TiO2. TiO2 synthesis involves the hydrolysis of titanium alkoxide followed by modification with H3PO4:HNO3. TiO2 was impregnated with Ru and Ni at various ratios (5:0, 4:1, 2.5:2.5, 1:4, and 0:5). The characterization was performed using NH3 Temperature-Programmed Desorption (NH3–TPD), N2 physisorption, XRF, XRD, H2–TPR, and SEM analyses. XRD confirmed the presence of anatase TiO2 at 2θ = 25.28°, 38.02°, and 38.33°, while Ru was dispersed in TiO2, as supported by the SEM and XRF results. N2 physisorption showed a decrease in the surface area by 20.1–40.3 m2/g, with mesoporous characteristics (pore size: 1.7-24.4 nm) after impregnation. NH3-TPD results indicate that the metals ratio influences the acidity of the catalyst. GC-MS analysis of the depolymerization reaction for aromatic monomers showed optimal results over the Ru4Ni1/TiO2 catalyst, demonstrating selectivity and yield of 42.2% and 71 mg/g, respectively. This study highlights a promising avenue for lignin depolymerization through efficient catalyst design and process optimization.</description><subject>Acidity</subject><subject>Ammonia</subject><subject>Anatase</subject><subject>Aromatic hydrocarbons</subject><subject>Bimetals</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical synthesis</subject><subject>Depolymerization</subject><subject>Design optimization</subject><subject>Hydrogenolysis</subject><subject>Lignin</subject><subject>Metals</subject><subject>Monomers</subject><subject>Polymers</subject><subject>Pore size</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkN9LwzAQgIMoOKd_gwGffKi9a9omfRxzU2E60O05pG0iGVtTm06Yf70tlYng0x3cd78-Qq4R7hCECJEnSYAMkxBZkoUYAkbAohMyOlZOjznwc3Lh_QYg5THLRmQ9Va3aHlpb0Htdu-1hpxv7pVrrKuoMXdj3ylbUVq2jk8btVA8-u8p1mKfuUzf0dR-82HBllxEdZvnWX5Izo7ZeX_3EMVnPZ6vpY7BYPjxNJ4vAIqQiUFHJ8zROUxRQQpQZXvBIme60jCW5YQUyA0qVALmOMReciULopIxzlne_ZmxMboa5deM-9tq3cuP2TdWtlAwEcuSpEB11O1DW1b_AbPYme2MS5WBM1qXpWPYPiyB717K3KHujfzvZNy6pb0w</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Idrus, A</creator><creator>Rahmandari, S</creator><creator>Ramadhoni, B F</creator><creator>Maryati, Y</creator><creator>Dwiatmoko, A A</creator><creator>Agustian, E</creator><creator>Widjaya, R R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20240601</creationdate><title>Catalytic Depolymerization of Lignin into Aromatic Monomers over Ru-Ni/TiO2 Catalysts</title><author>Idrus, A ; Rahmandari, S ; Ramadhoni, B F ; Maryati, Y ; Dwiatmoko, A A ; Agustian, E ; Widjaya, R R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1068-a2d7b6466180d029f7c72af674935bf3c13f0aad00be41b8738c8e5d4b3b35993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidity</topic><topic>Ammonia</topic><topic>Anatase</topic><topic>Aromatic hydrocarbons</topic><topic>Bimetals</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical synthesis</topic><topic>Depolymerization</topic><topic>Design optimization</topic><topic>Hydrogenolysis</topic><topic>Lignin</topic><topic>Metals</topic><topic>Monomers</topic><topic>Polymers</topic><topic>Pore size</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idrus, A</creatorcontrib><creatorcontrib>Rahmandari, S</creatorcontrib><creatorcontrib>Ramadhoni, B F</creatorcontrib><creatorcontrib>Maryati, Y</creatorcontrib><creatorcontrib>Dwiatmoko, A A</creatorcontrib><creatorcontrib>Agustian, E</creatorcontrib><creatorcontrib>Widjaya, R R</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idrus, A</au><au>Rahmandari, S</au><au>Ramadhoni, B F</au><au>Maryati, Y</au><au>Dwiatmoko, A A</au><au>Agustian, E</au><au>Widjaya, R R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Depolymerization of Lignin into Aromatic Monomers over Ru-Ni/TiO2 Catalysts</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>1359</volume><issue>1</issue><spage>012032</spage><pages>012032-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Lignin, a natural hydrocarbon polymer, can be converted into aromatic monomers via catalytic depolymerization. This study focuses on the lignin depolymerization into aromatic monomers through hydrogenolysis using bimetallic Ru-Ni supported on TiO2. TiO2 synthesis involves the hydrolysis of titanium alkoxide followed by modification with H3PO4:HNO3. TiO2 was impregnated with Ru and Ni at various ratios (5:0, 4:1, 2.5:2.5, 1:4, and 0:5). The characterization was performed using NH3 Temperature-Programmed Desorption (NH3–TPD), N2 physisorption, XRF, XRD, H2–TPR, and SEM analyses. XRD confirmed the presence of anatase TiO2 at 2θ = 25.28°, 38.02°, and 38.33°, while Ru was dispersed in TiO2, as supported by the SEM and XRF results. N2 physisorption showed a decrease in the surface area by 20.1–40.3 m2/g, with mesoporous characteristics (pore size: 1.7-24.4 nm) after impregnation. NH3-TPD results indicate that the metals ratio influences the acidity of the catalyst. GC-MS analysis of the depolymerization reaction for aromatic monomers showed optimal results over the Ru4Ni1/TiO2 catalyst, demonstrating selectivity and yield of 42.2% and 71 mg/g, respectively. This study highlights a promising avenue for lignin depolymerization through efficient catalyst design and process optimization.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1359/1/012032</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2024-06, Vol.1359 (1), p.012032 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_3081717688 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra |
subjects | Acidity Ammonia Anatase Aromatic hydrocarbons Bimetals Catalysts Catalytic converters Chemical synthesis Depolymerization Design optimization Hydrogenolysis Lignin Metals Monomers Polymers Pore size Titanium Titanium dioxide |
title | Catalytic Depolymerization of Lignin into Aromatic Monomers over Ru-Ni/TiO2 Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Depolymerization%20of%20Lignin%20into%20Aromatic%20Monomers%20over%20Ru-Ni/TiO2%20Catalysts&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Idrus,%20A&rft.date=2024-06-01&rft.volume=1359&rft.issue=1&rft.spage=012032&rft.pages=012032-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1359/1/012032&rft_dat=%3Cproquest_iop_j%3E3081717688%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081717688&rft_id=info:pmid/&rfr_iscdi=true |