Generating a monthly variability of sea surface salinity based on source tracing of salt concentration and the estimated SEBAL-evaporation

The variation and spatial distribution of sea surface salinity (SSS) depend on the geographic condition of the water surfaces and the temporal variation of atmospheric conditions. The SSS might differ in a local coastal area compared to similar situations in global and regional oceans. The SSS value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2024-06, Vol.1350 (1), p.12039
Hauptverfasser: Ghazali, M F, Saepuloh, A, Wikantika, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12039
container_title IOP conference series. Earth and environmental science
container_volume 1350
creator Ghazali, M F
Saepuloh, A
Wikantika, K
description The variation and spatial distribution of sea surface salinity (SSS) depend on the geographic condition of the water surfaces and the temporal variation of atmospheric conditions. The SSS might differ in a local coastal area compared to similar situations in global and regional oceans. The SSS values have been estimated based on spatial regression of extracted water-salt concentration as a source tracing of salt against corrected Landsat 8 satellite data during the drought season of April 2023. Here, the electrical conductivity (EC) from the Cimanuk River can be used as primary data. This result, paired with the evaporation-derived surface energy balance algorithm for land (SEBAL) algorithm, explains a monthly SSS variability after the validation using pre-defined resampled regional SSS and evaporation data. The result shows variations in estimated SSS values along with fluctuated SEBAL evaporation ranging from 1.64 to 1.62 dS/m and 1.04 to 0.41 W/m 2 , respectively. It describes monthly variability and their relationship in a local coastal area limited to the condition of a drought season. However, the validation shows that the root means square error (RMSE) of 1.00 from the SSS map, produced by the regression model involving band 7 of Landsat 8 and 9, has satisfied the reasonable SSS value ranges besides the best accuracy.
doi_str_mv 10.1088/1755-1315/1350/1/012039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081707628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081707628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2039-c5c609cb0adf4b07a5183ae27d842246f4780f601c66aed350db780159976efe3</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhosoOKfPYMArL-aSpm3aSx1zCgMvptfhNE1cR5fUJBvsFXxqEyoTQfAq4Zzv_885f5JcE3xHcFlOCcvzCaEknxKa4ymZYpJiWp0ko2Pn9PjH7Dy5cG6DccEyWo2Sz4XU0oJv9TsCtDXar7sD2oNtoW671h-QUchJQG5nFQiJHHStjvUanGyQ0ciZnQ0Nb0FEl8hD55EwWkjto3eAQDfIryWSzrdb8EG5mj_cLydyD70ZmMvkTEHn5NX3O07eHuevs6fJ8mXxPAusiHdNRC4KXIkaQ6OyGjPISUlBpqwpszTNCpWxEqsCE1EUIJuQSVOHCsmrihVSSTpObgbf3pqPXViIb8IFOozkFJeEYVakZaDYQAlrnLNS8d6Gze2BE8xj8DxGymO8PAbPCR-CD0o6KFvT_1j_r7r9QzWfr35zvG8U_QIvPJPm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081707628</pqid></control><display><type>article</type><title>Generating a monthly variability of sea surface salinity based on source tracing of salt concentration and the estimated SEBAL-evaporation</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Ghazali, M F ; Saepuloh, A ; Wikantika, K</creator><creatorcontrib>Ghazali, M F ; Saepuloh, A ; Wikantika, K</creatorcontrib><description>The variation and spatial distribution of sea surface salinity (SSS) depend on the geographic condition of the water surfaces and the temporal variation of atmospheric conditions. The SSS might differ in a local coastal area compared to similar situations in global and regional oceans. The SSS values have been estimated based on spatial regression of extracted water-salt concentration as a source tracing of salt against corrected Landsat 8 satellite data during the drought season of April 2023. Here, the electrical conductivity (EC) from the Cimanuk River can be used as primary data. This result, paired with the evaporation-derived surface energy balance algorithm for land (SEBAL) algorithm, explains a monthly SSS variability after the validation using pre-defined resampled regional SSS and evaporation data. The result shows variations in estimated SSS values along with fluctuated SEBAL evaporation ranging from 1.64 to 1.62 dS/m and 1.04 to 0.41 W/m 2 , respectively. It describes monthly variability and their relationship in a local coastal area limited to the condition of a drought season. However, the validation shows that the root means square error (RMSE) of 1.00 from the SSS map, produced by the regression model involving band 7 of Landsat 8 and 9, has satisfied the reasonable SSS value ranges besides the best accuracy.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1350/1/012039</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Atmospheric conditions ; Atmospheric correction ; Coastal waters ; Coastal zone ; Coasts ; Drought ; Electrical conductivity ; Electrical resistivity ; Energy balance ; Evaporation ; Geographical distribution ; Landsat ; Oceans ; Regression models ; Remote sensing ; Root-mean-square errors ; Salinity ; Salinity effects ; Salts ; Spatial data ; Spatial distribution ; Surface energy ; Surface properties ; Temporal variations ; Tracing ; Variability</subject><ispartof>IOP conference series. Earth and environmental science, 2024-06, Vol.1350 (1), p.12039</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2039-c5c609cb0adf4b07a5183ae27d842246f4780f601c66aed350db780159976efe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/1350/1/012039/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Ghazali, M F</creatorcontrib><creatorcontrib>Saepuloh, A</creatorcontrib><creatorcontrib>Wikantika, K</creatorcontrib><title>Generating a monthly variability of sea surface salinity based on source tracing of salt concentration and the estimated SEBAL-evaporation</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>The variation and spatial distribution of sea surface salinity (SSS) depend on the geographic condition of the water surfaces and the temporal variation of atmospheric conditions. The SSS might differ in a local coastal area compared to similar situations in global and regional oceans. The SSS values have been estimated based on spatial regression of extracted water-salt concentration as a source tracing of salt against corrected Landsat 8 satellite data during the drought season of April 2023. Here, the electrical conductivity (EC) from the Cimanuk River can be used as primary data. This result, paired with the evaporation-derived surface energy balance algorithm for land (SEBAL) algorithm, explains a monthly SSS variability after the validation using pre-defined resampled regional SSS and evaporation data. The result shows variations in estimated SSS values along with fluctuated SEBAL evaporation ranging from 1.64 to 1.62 dS/m and 1.04 to 0.41 W/m 2 , respectively. It describes monthly variability and their relationship in a local coastal area limited to the condition of a drought season. However, the validation shows that the root means square error (RMSE) of 1.00 from the SSS map, produced by the regression model involving band 7 of Landsat 8 and 9, has satisfied the reasonable SSS value ranges besides the best accuracy.</description><subject>Algorithms</subject><subject>Atmospheric conditions</subject><subject>Atmospheric correction</subject><subject>Coastal waters</subject><subject>Coastal zone</subject><subject>Coasts</subject><subject>Drought</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy balance</subject><subject>Evaporation</subject><subject>Geographical distribution</subject><subject>Landsat</subject><subject>Oceans</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salts</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Temporal variations</subject><subject>Tracing</subject><subject>Variability</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkNFKwzAUhosoOKfPYMArL-aSpm3aSx1zCgMvptfhNE1cR5fUJBvsFXxqEyoTQfAq4Zzv_885f5JcE3xHcFlOCcvzCaEknxKa4ymZYpJiWp0ko2Pn9PjH7Dy5cG6DccEyWo2Sz4XU0oJv9TsCtDXar7sD2oNtoW671h-QUchJQG5nFQiJHHStjvUanGyQ0ciZnQ0Nb0FEl8hD55EwWkjto3eAQDfIryWSzrdb8EG5mj_cLydyD70ZmMvkTEHn5NX3O07eHuevs6fJ8mXxPAusiHdNRC4KXIkaQ6OyGjPISUlBpqwpszTNCpWxEqsCE1EUIJuQSVOHCsmrihVSSTpObgbf3pqPXViIb8IFOozkFJeEYVakZaDYQAlrnLNS8d6Gze2BE8xj8DxGymO8PAbPCR-CD0o6KFvT_1j_r7r9QzWfr35zvG8U_QIvPJPm</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ghazali, M F</creator><creator>Saepuloh, A</creator><creator>Wikantika, K</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20240601</creationdate><title>Generating a monthly variability of sea surface salinity based on source tracing of salt concentration and the estimated SEBAL-evaporation</title><author>Ghazali, M F ; Saepuloh, A ; Wikantika, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2039-c5c609cb0adf4b07a5183ae27d842246f4780f601c66aed350db780159976efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Atmospheric conditions</topic><topic>Atmospheric correction</topic><topic>Coastal waters</topic><topic>Coastal zone</topic><topic>Coasts</topic><topic>Drought</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy balance</topic><topic>Evaporation</topic><topic>Geographical distribution</topic><topic>Landsat</topic><topic>Oceans</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salts</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Temporal variations</topic><topic>Tracing</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghazali, M F</creatorcontrib><creatorcontrib>Saepuloh, A</creatorcontrib><creatorcontrib>Wikantika, K</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghazali, M F</au><au>Saepuloh, A</au><au>Wikantika, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating a monthly variability of sea surface salinity based on source tracing of salt concentration and the estimated SEBAL-evaporation</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>1350</volume><issue>1</issue><spage>12039</spage><pages>12039-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The variation and spatial distribution of sea surface salinity (SSS) depend on the geographic condition of the water surfaces and the temporal variation of atmospheric conditions. The SSS might differ in a local coastal area compared to similar situations in global and regional oceans. The SSS values have been estimated based on spatial regression of extracted water-salt concentration as a source tracing of salt against corrected Landsat 8 satellite data during the drought season of April 2023. Here, the electrical conductivity (EC) from the Cimanuk River can be used as primary data. This result, paired with the evaporation-derived surface energy balance algorithm for land (SEBAL) algorithm, explains a monthly SSS variability after the validation using pre-defined resampled regional SSS and evaporation data. The result shows variations in estimated SSS values along with fluctuated SEBAL evaporation ranging from 1.64 to 1.62 dS/m and 1.04 to 0.41 W/m 2 , respectively. It describes monthly variability and their relationship in a local coastal area limited to the condition of a drought season. However, the validation shows that the root means square error (RMSE) of 1.00 from the SSS map, produced by the regression model involving band 7 of Landsat 8 and 9, has satisfied the reasonable SSS value ranges besides the best accuracy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1350/1/012039</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2024-06, Vol.1350 (1), p.12039
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_3081707628
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Algorithms
Atmospheric conditions
Atmospheric correction
Coastal waters
Coastal zone
Coasts
Drought
Electrical conductivity
Electrical resistivity
Energy balance
Evaporation
Geographical distribution
Landsat
Oceans
Regression models
Remote sensing
Root-mean-square errors
Salinity
Salinity effects
Salts
Spatial data
Spatial distribution
Surface energy
Surface properties
Temporal variations
Tracing
Variability
title Generating a monthly variability of sea surface salinity based on source tracing of salt concentration and the estimated SEBAL-evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20a%20monthly%20variability%20of%20sea%20surface%20salinity%20based%20on%20source%20tracing%20of%20salt%20concentration%20and%20the%20estimated%20SEBAL-evaporation&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Ghazali,%20M%20F&rft.date=2024-06-01&rft.volume=1350&rft.issue=1&rft.spage=12039&rft.pages=12039-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1350/1/012039&rft_dat=%3Cproquest_cross%3E3081707628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081707628&rft_id=info:pmid/&rfr_iscdi=true