Manipulation of Cs0.1FA0.9PbI3 crystallization behavior towards efficient carbon-based printable mesoscopic perovskite solar cells
Carbon-based printable mesoscopic perovskite solar cells (MPSCs) have attracted significant attention due to their excellent stability and low manufacturing cost. However, the filling and crystallization behavior of perovskite are difficult to finely manipulate due to the confined space of triple-me...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-07, Vol.12 (28), p.17203-17212 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17212 |
---|---|
container_issue | 28 |
container_start_page | 17203 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Wang, Jinjiang Wang, Dongjie Zhang, Yang Chen, Yiwen Huang, Tianhuan Zhu, Wending Zhang, Zheling Huang, Yu Xiong, Jian Dinghan Xiang Zhang, Jian |
description | Carbon-based printable mesoscopic perovskite solar cells (MPSCs) have attracted significant attention due to their excellent stability and low manufacturing cost. However, the filling and crystallization behavior of perovskite are difficult to finely manipulate due to the confined space of triple-mesoporous layers. Herein, an innovative approach is first proposed to effectively manipulate the crystallization behavior of Cs0.1FA0.9PbI3 perovskite in triple-mesoporous layers by introducing propylamine hydrochloride (PACl). Under the manipulation of PACl, the nucleation density of perovskite crystals was significantly increased, the crystallization rate was delayed, thus the compact filling and preferred crystal orientation growth of the perovskite were realized. Simultaneously, ammonium ions (NH3+) and chloride ions (Cl−) of PACl compensate for ionic vacancies in the perovskite through hydrogen bonds and ionic bonds, thus passivating defects. Consequently, MPSCs with PACl achieved a champion power conversion efficiency of 18.06%, and the open circuit voltage of MPSCs increased from 0.940 V to 0.991 V. The work developed a simple method based on alkylamine hydrochloride to finely manipulate the crystallization of the CsFA-based perovskite. |
doi_str_mv | 10.1039/d4ta01254b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081516052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081516052</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-398b62b1e02359c165196f95e166e0ab6834dbbb65b04bfb12069c00f89e59613</originalsourceid><addsrcrecordid>eNo9j0FLAzEUhIMoWGov_oKA560vm03cHEuxWqjoQc8lyb5gatysSVrRo7_chYpzmTkM3zCEXDKYM-DqumuKBlaLxpyQSQ0CqptGydP_3LbnZJbzDka1AFKpCfl50L0f9kEXH3saHV3mkbZawFw9mTWnNn3lokPw38eGwVd98DHREj916jJF57z12BdqdTKxr4zO2NEh-b5oE5C-Y47ZxsFbOmCKh_zmC9Icg07UYgj5gpw5HTLO_nxKXla3z8v7avN4t14uNtXAGC8VV62RtWEINRfKMimYkk4JZFIiaCNb3nTGGCkMNMYZVo8PLYBrFQolGZ-SqyN3SPFjj7lsd3Gf-nFyy6FlgkkQNf8FiIdjBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081516052</pqid></control><display><type>article</type><title>Manipulation of Cs0.1FA0.9PbI3 crystallization behavior towards efficient carbon-based printable mesoscopic perovskite solar cells</title><source>Royal Society of Chemistry E-Journals</source><creator>Wang, Jinjiang ; Wang, Dongjie ; Zhang, Yang ; Chen, Yiwen ; Huang, Tianhuan ; Zhu, Wending ; Zhang, Zheling ; Huang, Yu ; Xiong, Jian ; Dinghan Xiang ; Zhang, Jian</creator><creatorcontrib>Wang, Jinjiang ; Wang, Dongjie ; Zhang, Yang ; Chen, Yiwen ; Huang, Tianhuan ; Zhu, Wending ; Zhang, Zheling ; Huang, Yu ; Xiong, Jian ; Dinghan Xiang ; Zhang, Jian</creatorcontrib><description>Carbon-based printable mesoscopic perovskite solar cells (MPSCs) have attracted significant attention due to their excellent stability and low manufacturing cost. However, the filling and crystallization behavior of perovskite are difficult to finely manipulate due to the confined space of triple-mesoporous layers. Herein, an innovative approach is first proposed to effectively manipulate the crystallization behavior of Cs0.1FA0.9PbI3 perovskite in triple-mesoporous layers by introducing propylamine hydrochloride (PACl). Under the manipulation of PACl, the nucleation density of perovskite crystals was significantly increased, the crystallization rate was delayed, thus the compact filling and preferred crystal orientation growth of the perovskite were realized. Simultaneously, ammonium ions (NH3+) and chloride ions (Cl−) of PACl compensate for ionic vacancies in the perovskite through hydrogen bonds and ionic bonds, thus passivating defects. Consequently, MPSCs with PACl achieved a champion power conversion efficiency of 18.06%, and the open circuit voltage of MPSCs increased from 0.940 V to 0.991 V. The work developed a simple method based on alkylamine hydrochloride to finely manipulate the crystallization of the CsFA-based perovskite.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta01254b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkylamines ; Ammonia ; Ammonium ; Carbon ; Chloride ions ; Confined spaces ; Crystal defects ; Crystal growth ; Crystal structure ; Crystallization ; Crystals ; Energy conversion efficiency ; Hydrogen bonding ; Hydrogen bonds ; Ions ; Nucleation ; Open circuit voltage ; Perovskites ; Photovoltaic cells ; Production costs ; Solar cells</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-07, Vol.12 (28), p.17203-17212</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Jinjiang</creatorcontrib><creatorcontrib>Wang, Dongjie</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Chen, Yiwen</creatorcontrib><creatorcontrib>Huang, Tianhuan</creatorcontrib><creatorcontrib>Zhu, Wending</creatorcontrib><creatorcontrib>Zhang, Zheling</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Dinghan Xiang</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><title>Manipulation of Cs0.1FA0.9PbI3 crystallization behavior towards efficient carbon-based printable mesoscopic perovskite solar cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Carbon-based printable mesoscopic perovskite solar cells (MPSCs) have attracted significant attention due to their excellent stability and low manufacturing cost. However, the filling and crystallization behavior of perovskite are difficult to finely manipulate due to the confined space of triple-mesoporous layers. Herein, an innovative approach is first proposed to effectively manipulate the crystallization behavior of Cs0.1FA0.9PbI3 perovskite in triple-mesoporous layers by introducing propylamine hydrochloride (PACl). Under the manipulation of PACl, the nucleation density of perovskite crystals was significantly increased, the crystallization rate was delayed, thus the compact filling and preferred crystal orientation growth of the perovskite were realized. Simultaneously, ammonium ions (NH3+) and chloride ions (Cl−) of PACl compensate for ionic vacancies in the perovskite through hydrogen bonds and ionic bonds, thus passivating defects. Consequently, MPSCs with PACl achieved a champion power conversion efficiency of 18.06%, and the open circuit voltage of MPSCs increased from 0.940 V to 0.991 V. The work developed a simple method based on alkylamine hydrochloride to finely manipulate the crystallization of the CsFA-based perovskite.</description><subject>Alkylamines</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Carbon</subject><subject>Chloride ions</subject><subject>Confined spaces</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Energy conversion efficiency</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Ions</subject><subject>Nucleation</subject><subject>Open circuit voltage</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Production costs</subject><subject>Solar cells</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j0FLAzEUhIMoWGov_oKA560vm03cHEuxWqjoQc8lyb5gatysSVrRo7_chYpzmTkM3zCEXDKYM-DqumuKBlaLxpyQSQ0CqptGydP_3LbnZJbzDka1AFKpCfl50L0f9kEXH3saHV3mkbZawFw9mTWnNn3lokPw38eGwVd98DHREj916jJF57z12BdqdTKxr4zO2NEh-b5oE5C-Y47ZxsFbOmCKh_zmC9Icg07UYgj5gpw5HTLO_nxKXla3z8v7avN4t14uNtXAGC8VV62RtWEINRfKMimYkk4JZFIiaCNb3nTGGCkMNMYZVo8PLYBrFQolGZ-SqyN3SPFjj7lsd3Gf-nFyy6FlgkkQNf8FiIdjBg</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Wang, Jinjiang</creator><creator>Wang, Dongjie</creator><creator>Zhang, Yang</creator><creator>Chen, Yiwen</creator><creator>Huang, Tianhuan</creator><creator>Zhu, Wending</creator><creator>Zhang, Zheling</creator><creator>Huang, Yu</creator><creator>Xiong, Jian</creator><creator>Dinghan Xiang</creator><creator>Zhang, Jian</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240716</creationdate><title>Manipulation of Cs0.1FA0.9PbI3 crystallization behavior towards efficient carbon-based printable mesoscopic perovskite solar cells</title><author>Wang, Jinjiang ; Wang, Dongjie ; Zhang, Yang ; Chen, Yiwen ; Huang, Tianhuan ; Zhu, Wending ; Zhang, Zheling ; Huang, Yu ; Xiong, Jian ; Dinghan Xiang ; Zhang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-398b62b1e02359c165196f95e166e0ab6834dbbb65b04bfb12069c00f89e59613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkylamines</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Carbon</topic><topic>Chloride ions</topic><topic>Confined spaces</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Energy conversion efficiency</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Ions</topic><topic>Nucleation</topic><topic>Open circuit voltage</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Production costs</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinjiang</creatorcontrib><creatorcontrib>Wang, Dongjie</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Chen, Yiwen</creatorcontrib><creatorcontrib>Huang, Tianhuan</creatorcontrib><creatorcontrib>Zhu, Wending</creatorcontrib><creatorcontrib>Zhang, Zheling</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Dinghan Xiang</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinjiang</au><au>Wang, Dongjie</au><au>Zhang, Yang</au><au>Chen, Yiwen</au><au>Huang, Tianhuan</au><au>Zhu, Wending</au><au>Zhang, Zheling</au><au>Huang, Yu</au><au>Xiong, Jian</au><au>Dinghan Xiang</au><au>Zhang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation of Cs0.1FA0.9PbI3 crystallization behavior towards efficient carbon-based printable mesoscopic perovskite solar cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-07-16</date><risdate>2024</risdate><volume>12</volume><issue>28</issue><spage>17203</spage><epage>17212</epage><pages>17203-17212</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Carbon-based printable mesoscopic perovskite solar cells (MPSCs) have attracted significant attention due to their excellent stability and low manufacturing cost. However, the filling and crystallization behavior of perovskite are difficult to finely manipulate due to the confined space of triple-mesoporous layers. Herein, an innovative approach is first proposed to effectively manipulate the crystallization behavior of Cs0.1FA0.9PbI3 perovskite in triple-mesoporous layers by introducing propylamine hydrochloride (PACl). Under the manipulation of PACl, the nucleation density of perovskite crystals was significantly increased, the crystallization rate was delayed, thus the compact filling and preferred crystal orientation growth of the perovskite were realized. Simultaneously, ammonium ions (NH3+) and chloride ions (Cl−) of PACl compensate for ionic vacancies in the perovskite through hydrogen bonds and ionic bonds, thus passivating defects. Consequently, MPSCs with PACl achieved a champion power conversion efficiency of 18.06%, and the open circuit voltage of MPSCs increased from 0.940 V to 0.991 V. The work developed a simple method based on alkylamine hydrochloride to finely manipulate the crystallization of the CsFA-based perovskite.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta01254b</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-07, Vol.12 (28), p.17203-17212 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3081516052 |
source | Royal Society of Chemistry E-Journals |
subjects | Alkylamines Ammonia Ammonium Carbon Chloride ions Confined spaces Crystal defects Crystal growth Crystal structure Crystallization Crystals Energy conversion efficiency Hydrogen bonding Hydrogen bonds Ions Nucleation Open circuit voltage Perovskites Photovoltaic cells Production costs Solar cells |
title | Manipulation of Cs0.1FA0.9PbI3 crystallization behavior towards efficient carbon-based printable mesoscopic perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20of%20Cs0.1FA0.9PbI3%20crystallization%20behavior%20towards%20efficient%20carbon-based%20printable%20mesoscopic%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Jinjiang&rft.date=2024-07-16&rft.volume=12&rft.issue=28&rft.spage=17203&rft.epage=17212&rft.pages=17203-17212&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta01254b&rft_dat=%3Cproquest%3E3081516052%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081516052&rft_id=info:pmid/&rfr_iscdi=true |