TOP:A New Target-Audience Oriented Content Paraphrase Task

Recommendation systems usually recommend the existing contents to different users. However, in comparison to static recommendation methods, a recommendation logic that dynamically adjusts based on user interest preferences may potentially attract a larger user base. Thus, we consider paraphrasing ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Lin, Boda, Shi, Jiaxin, Haolong Yan, Tang, Binghao, Gong, Xiaocheng, Li, Si
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lin, Boda
Shi, Jiaxin
Haolong Yan
Tang, Binghao
Gong, Xiaocheng
Li, Si
description Recommendation systems usually recommend the existing contents to different users. However, in comparison to static recommendation methods, a recommendation logic that dynamically adjusts based on user interest preferences may potentially attract a larger user base. Thus, we consider paraphrasing existing content based on the interests of the users to modify the content to better align with the preferences of users. In this paper, we propose a new task named Target-Audience Oriented Content Paraphrase aims to generate more customized contents for the target audience. We introduce the task definition and the corresponding framework for the proposed task and the creation of the corresponding datasets. We utilize the Large Language Models (LLMs) and Large Vision Models (LVMs) to accomplish the base implementation of the TOP framework and provide the referential baseline results for the proposed task.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081451370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081451370</sourcerecordid><originalsourceid>FETCH-proquest_journals_30814513703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCvEPsHJU8EstVwhJLEpPLdF1LE3JTM1LTlXwLwLSJakpCs75QCqvRCEgsSixIKMosTgVqLY4m4eBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0NLAxNTA2NzQ2MiVMFACytNbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081451370</pqid></control><display><type>article</type><title>TOP:A New Target-Audience Oriented Content Paraphrase Task</title><source>Freely Accessible Journals</source><creator>Lin, Boda ; Shi, Jiaxin ; Haolong Yan ; Tang, Binghao ; Gong, Xiaocheng ; Li, Si</creator><creatorcontrib>Lin, Boda ; Shi, Jiaxin ; Haolong Yan ; Tang, Binghao ; Gong, Xiaocheng ; Li, Si</creatorcontrib><description>Recommendation systems usually recommend the existing contents to different users. However, in comparison to static recommendation methods, a recommendation logic that dynamically adjusts based on user interest preferences may potentially attract a larger user base. Thus, we consider paraphrasing existing content based on the interests of the users to modify the content to better align with the preferences of users. In this paper, we propose a new task named Target-Audience Oriented Content Paraphrase aims to generate more customized contents for the target audience. We introduce the task definition and the corresponding framework for the proposed task and the creation of the corresponding datasets. We utilize the Large Language Models (LLMs) and Large Vision Models (LVMs) to accomplish the base implementation of the TOP framework and provide the referential baseline results for the proposed task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Large language models ; Recommender systems</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Lin, Boda</creatorcontrib><creatorcontrib>Shi, Jiaxin</creatorcontrib><creatorcontrib>Haolong Yan</creatorcontrib><creatorcontrib>Tang, Binghao</creatorcontrib><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Li, Si</creatorcontrib><title>TOP:A New Target-Audience Oriented Content Paraphrase Task</title><title>arXiv.org</title><description>Recommendation systems usually recommend the existing contents to different users. However, in comparison to static recommendation methods, a recommendation logic that dynamically adjusts based on user interest preferences may potentially attract a larger user base. Thus, we consider paraphrasing existing content based on the interests of the users to modify the content to better align with the preferences of users. In this paper, we propose a new task named Target-Audience Oriented Content Paraphrase aims to generate more customized contents for the target audience. We introduce the task definition and the corresponding framework for the proposed task and the creation of the corresponding datasets. We utilize the Large Language Models (LLMs) and Large Vision Models (LVMs) to accomplish the base implementation of the TOP framework and provide the referential baseline results for the proposed task.</description><subject>Large language models</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCvEPsHJU8EstVwhJLEpPLdF1LE3JTM1LTlXwLwLSJakpCs75QCqvRCEgsSixIKMosTgVqLY4m4eBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0NLAxNTA2NzQ2MiVMFACytNbg</recordid><startdate>20240713</startdate><enddate>20240713</enddate><creator>Lin, Boda</creator><creator>Shi, Jiaxin</creator><creator>Haolong Yan</creator><creator>Tang, Binghao</creator><creator>Gong, Xiaocheng</creator><creator>Li, Si</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240713</creationdate><title>TOP:A New Target-Audience Oriented Content Paraphrase Task</title><author>Lin, Boda ; Shi, Jiaxin ; Haolong Yan ; Tang, Binghao ; Gong, Xiaocheng ; Li, Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30814513703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Large language models</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Boda</creatorcontrib><creatorcontrib>Shi, Jiaxin</creatorcontrib><creatorcontrib>Haolong Yan</creatorcontrib><creatorcontrib>Tang, Binghao</creatorcontrib><creatorcontrib>Gong, Xiaocheng</creatorcontrib><creatorcontrib>Li, Si</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Boda</au><au>Shi, Jiaxin</au><au>Haolong Yan</au><au>Tang, Binghao</au><au>Gong, Xiaocheng</au><au>Li, Si</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TOP:A New Target-Audience Oriented Content Paraphrase Task</atitle><jtitle>arXiv.org</jtitle><date>2024-07-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recommendation systems usually recommend the existing contents to different users. However, in comparison to static recommendation methods, a recommendation logic that dynamically adjusts based on user interest preferences may potentially attract a larger user base. Thus, we consider paraphrasing existing content based on the interests of the users to modify the content to better align with the preferences of users. In this paper, we propose a new task named Target-Audience Oriented Content Paraphrase aims to generate more customized contents for the target audience. We introduce the task definition and the corresponding framework for the proposed task and the creation of the corresponding datasets. We utilize the Large Language Models (LLMs) and Large Vision Models (LVMs) to accomplish the base implementation of the TOP framework and provide the referential baseline results for the proposed task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3081451370
source Freely Accessible Journals
subjects Large language models
Recommender systems
title TOP:A New Target-Audience Oriented Content Paraphrase Task
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TOP:A%20New%20Target-Audience%20Oriented%20Content%20Paraphrase%20Task&rft.jtitle=arXiv.org&rft.au=Lin,%20Boda&rft.date=2024-07-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081451370%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081451370&rft_id=info:pmid/&rfr_iscdi=true