What is Reproducibility in Artificial Intelligence and Machine Learning Research?
In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over val...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Desai, Abhyuday Mohamed, Abdelhamid Padalkar, Nakul R |
description | In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. Responding to this challenge, we introduce a validation framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we hope to contribute to a more informed and methodical approach to addressing the challenges of reproducibility, thereby supporting the community's efforts to enhance the reliability and trustworthiness of its research findings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081441124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081441124</sourcerecordid><originalsourceid>FETCH-proquest_journals_30814411243</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBdyKvanYgoCrpQBJclprftLSHVJF3493bhB7iagTNnJiQRUvKsUELMSBpCxxgTq7XIc5mQ66PVkWKgN3j5vhoMPtFi_FB0dOsj1mhQW3pyEazFBpwBql1FL9q06ICeQXuHrhn9MFbTbhZkWmsbIP3lnCwP-_vumI3_7wFCLLt-8G5EpWQFV4pzoeR_qy-OFz7-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081441124</pqid></control><display><type>article</type><title>What is Reproducibility in Artificial Intelligence and Machine Learning Research?</title><source>Free E- Journals</source><creator>Desai, Abhyuday ; Mohamed, Abdelhamid ; Padalkar, Nakul R</creator><creatorcontrib>Desai, Abhyuday ; Mohamed, Abdelhamid ; Padalkar, Nakul R</creatorcontrib><description>In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. Responding to this challenge, we introduce a validation framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we hope to contribute to a more informed and methodical approach to addressing the challenges of reproducibility, thereby supporting the community's efforts to enhance the reliability and trustworthiness of its research findings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Machine learning ; Reproducibility</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Desai, Abhyuday</creatorcontrib><creatorcontrib>Mohamed, Abdelhamid</creatorcontrib><creatorcontrib>Padalkar, Nakul R</creatorcontrib><title>What is Reproducibility in Artificial Intelligence and Machine Learning Research?</title><title>arXiv.org</title><description>In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. Responding to this challenge, we introduce a validation framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we hope to contribute to a more informed and methodical approach to addressing the challenges of reproducibility, thereby supporting the community's efforts to enhance the reliability and trustworthiness of its research findings.</description><subject>Artificial intelligence</subject><subject>Machine learning</subject><subject>Reproducibility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBdyKvanYgoCrpQBJclprftLSHVJF3493bhB7iagTNnJiQRUvKsUELMSBpCxxgTq7XIc5mQ66PVkWKgN3j5vhoMPtFi_FB0dOsj1mhQW3pyEazFBpwBql1FL9q06ICeQXuHrhn9MFbTbhZkWmsbIP3lnCwP-_vumI3_7wFCLLt-8G5EpWQFV4pzoeR_qy-OFz7-</recordid><startdate>20240429</startdate><enddate>20240429</enddate><creator>Desai, Abhyuday</creator><creator>Mohamed, Abdelhamid</creator><creator>Padalkar, Nakul R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240429</creationdate><title>What is Reproducibility in Artificial Intelligence and Machine Learning Research?</title><author>Desai, Abhyuday ; Mohamed, Abdelhamid ; Padalkar, Nakul R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30814411243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Machine learning</topic><topic>Reproducibility</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, Abhyuday</creatorcontrib><creatorcontrib>Mohamed, Abdelhamid</creatorcontrib><creatorcontrib>Padalkar, Nakul R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Abhyuday</au><au>Mohamed, Abdelhamid</au><au>Padalkar, Nakul R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>What is Reproducibility in Artificial Intelligence and Machine Learning Research?</atitle><jtitle>arXiv.org</jtitle><date>2024-04-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. Responding to this challenge, we introduce a validation framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we hope to contribute to a more informed and methodical approach to addressing the challenges of reproducibility, thereby supporting the community's efforts to enhance the reliability and trustworthiness of its research findings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3081441124 |
source | Free E- Journals |
subjects | Artificial intelligence Machine learning Reproducibility |
title | What is Reproducibility in Artificial Intelligence and Machine Learning Research? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=What%20is%20Reproducibility%20in%20Artificial%20Intelligence%20and%20Machine%20Learning%20Research?&rft.jtitle=arXiv.org&rft.au=Desai,%20Abhyuday&rft.date=2024-04-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081441124%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081441124&rft_id=info:pmid/&rfr_iscdi=true |