Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity

Video-to-audio (V2A) generation leverages visual-only video features to render plausible sounds that match the scene. Importantly, the generated sound onsets should match the visual actions that are aligned with them, otherwise unnatural synchronization artifacts arise. Recent works have explored th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Pascual, Santiago, Yeh, Chunghsin, Tsiamas, Ioannis, Serrà, Joan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pascual, Santiago
Yeh, Chunghsin
Tsiamas, Ioannis
Serrà, Joan
description Video-to-audio (V2A) generation leverages visual-only video features to render plausible sounds that match the scene. Importantly, the generated sound onsets should match the visual actions that are aligned with them, otherwise unnatural synchronization artifacts arise. Recent works have explored the progression of conditioning sound generators on still images and then video features, focusing on quality and semantic matching while ignoring synchronization, or by sacrificing some amount of quality to focus on improving synchronization only. In this work, we propose a V2A generative model, named MaskVAT, that interconnects a full-band high-quality general audio codec with a sequence-to-sequence masked generative model. This combination allows modeling both high audio quality, semantic matching, and temporal synchronicity at the same time. Our results show that, by combining a high-quality codec with the proper pre-trained audio-visual features and a sequence-to-sequence parallel structure, we are able to yield highly synchronized results on one hand, whilst being competitive with the state of the art of non-codec generative audio models. Sample videos and generated audios are available at https://maskvat.github.io .
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081439939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081439939</sourcerecordid><originalsourceid>FETCH-proquest_journals_30814399393</originalsourceid><addsrcrecordid>eNqNi70OgjAYABsTE4nyDk2cm5QWFEZj8GdwkrCSBj5CUVvtVzS8vQw-gNMNdzcjgZAyYmksxIKEiD3nXGy2IklkQM4XhTdo6BEMOOX1G2ipG7DMW7YbGm1p4ZTB1roHOKQf7Tuam06Zepquo6k7Z42utR9XZN6qO0L445KsD3mxP7Gns68B0Fe9HZyZVCV5GsUyy2Qm_6u-niw8ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081439939</pqid></control><display><type>article</type><title>Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity</title><source>Free E- Journals</source><creator>Pascual, Santiago ; Yeh, Chunghsin ; Tsiamas, Ioannis ; Serrà, Joan</creator><creatorcontrib>Pascual, Santiago ; Yeh, Chunghsin ; Tsiamas, Ioannis ; Serrà, Joan</creatorcontrib><description>Video-to-audio (V2A) generation leverages visual-only video features to render plausible sounds that match the scene. Importantly, the generated sound onsets should match the visual actions that are aligned with them, otherwise unnatural synchronization artifacts arise. Recent works have explored the progression of conditioning sound generators on still images and then video features, focusing on quality and semantic matching while ignoring synchronization, or by sacrificing some amount of quality to focus on improving synchronization only. In this work, we propose a V2A generative model, named MaskVAT, that interconnects a full-band high-quality general audio codec with a sequence-to-sequence masked generative model. This combination allows modeling both high audio quality, semantic matching, and temporal synchronicity at the same time. Our results show that, by combining a high-quality codec with the proper pre-trained audio-visual features and a sequence-to-sequence parallel structure, we are able to yield highly synchronized results on one hand, whilst being competitive with the state of the art of non-codec generative audio models. Sample videos and generated audios are available at https://maskvat.github.io .</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codec ; Image enhancement ; Image quality ; Matching ; Semantics ; Sound generators ; Synchronism ; Time synchronization</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pascual, Santiago</creatorcontrib><creatorcontrib>Yeh, Chunghsin</creatorcontrib><creatorcontrib>Tsiamas, Ioannis</creatorcontrib><creatorcontrib>Serrà, Joan</creatorcontrib><title>Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity</title><title>arXiv.org</title><description>Video-to-audio (V2A) generation leverages visual-only video features to render plausible sounds that match the scene. Importantly, the generated sound onsets should match the visual actions that are aligned with them, otherwise unnatural synchronization artifacts arise. Recent works have explored the progression of conditioning sound generators on still images and then video features, focusing on quality and semantic matching while ignoring synchronization, or by sacrificing some amount of quality to focus on improving synchronization only. In this work, we propose a V2A generative model, named MaskVAT, that interconnects a full-band high-quality general audio codec with a sequence-to-sequence masked generative model. This combination allows modeling both high audio quality, semantic matching, and temporal synchronicity at the same time. Our results show that, by combining a high-quality codec with the proper pre-trained audio-visual features and a sequence-to-sequence parallel structure, we are able to yield highly synchronized results on one hand, whilst being competitive with the state of the art of non-codec generative audio models. Sample videos and generated audios are available at https://maskvat.github.io .</description><subject>Codec</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Matching</subject><subject>Semantics</subject><subject>Sound generators</subject><subject>Synchronism</subject><subject>Time synchronization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70OgjAYABsTE4nyDk2cm5QWFEZj8GdwkrCSBj5CUVvtVzS8vQw-gNMNdzcjgZAyYmksxIKEiD3nXGy2IklkQM4XhTdo6BEMOOX1G2ipG7DMW7YbGm1p4ZTB1roHOKQf7Tuam06Zepquo6k7Z42utR9XZN6qO0L445KsD3mxP7Gns68B0Fe9HZyZVCV5GsUyy2Qm_6u-niw8ww</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Pascual, Santiago</creator><creator>Yeh, Chunghsin</creator><creator>Tsiamas, Ioannis</creator><creator>Serrà, Joan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240715</creationdate><title>Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity</title><author>Pascual, Santiago ; Yeh, Chunghsin ; Tsiamas, Ioannis ; Serrà, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30814399393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codec</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Matching</topic><topic>Semantics</topic><topic>Sound generators</topic><topic>Synchronism</topic><topic>Time synchronization</topic><toplevel>online_resources</toplevel><creatorcontrib>Pascual, Santiago</creatorcontrib><creatorcontrib>Yeh, Chunghsin</creatorcontrib><creatorcontrib>Tsiamas, Ioannis</creatorcontrib><creatorcontrib>Serrà, Joan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascual, Santiago</au><au>Yeh, Chunghsin</au><au>Tsiamas, Ioannis</au><au>Serrà, Joan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity</atitle><jtitle>arXiv.org</jtitle><date>2024-07-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Video-to-audio (V2A) generation leverages visual-only video features to render plausible sounds that match the scene. Importantly, the generated sound onsets should match the visual actions that are aligned with them, otherwise unnatural synchronization artifacts arise. Recent works have explored the progression of conditioning sound generators on still images and then video features, focusing on quality and semantic matching while ignoring synchronization, or by sacrificing some amount of quality to focus on improving synchronization only. In this work, we propose a V2A generative model, named MaskVAT, that interconnects a full-band high-quality general audio codec with a sequence-to-sequence masked generative model. This combination allows modeling both high audio quality, semantic matching, and temporal synchronicity at the same time. Our results show that, by combining a high-quality codec with the proper pre-trained audio-visual features and a sequence-to-sequence parallel structure, we are able to yield highly synchronized results on one hand, whilst being competitive with the state of the art of non-codec generative audio models. Sample videos and generated audios are available at https://maskvat.github.io .</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3081439939
source Free E- Journals
subjects Codec
Image enhancement
Image quality
Matching
Semantics
Sound generators
Synchronism
Time synchronization
title Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Masked%20Generative%20Video-to-Audio%20Transformers%20with%20Enhanced%20Synchronicity&rft.jtitle=arXiv.org&rft.au=Pascual,%20Santiago&rft.date=2024-07-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081439939%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081439939&rft_id=info:pmid/&rfr_iscdi=true