CUSIDE-array: A Streaming Multi-Channel End-to-End Speech Recognition System with Realistic Evaluations

Recently multi-channel end-to-end (ME2E) ASR systems have emerged. While streaming single-channel end-to-end ASR has been extensively studied, streaming ME2E ASR is limited in exploration. Additionally, recent studies call attention to the gap between in-distribution (ID) and out-of-distribution (OO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Kong, Xiangzhu, Tianqi Ning, Huang, Hao, Ou, Zhijian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kong, Xiangzhu
Tianqi Ning
Huang, Hao
Ou, Zhijian
description Recently multi-channel end-to-end (ME2E) ASR systems have emerged. While streaming single-channel end-to-end ASR has been extensively studied, streaming ME2E ASR is limited in exploration. Additionally, recent studies call attention to the gap between in-distribution (ID) and out-of-distribution (OOD) tests and doing realistic evaluations. This paper focuses on two research problems: realizing streaming ME2E ASR and improving OOD generalization. We propose the CUSIDE-array method, which integrates the recent CUSIDE methodology (Chunking, Simulating Future Context and Decoding) into the neural beamformer approach of ME2E ASR. It enables streaming processing of both front-end and back-end with a total latency of 402ms. The CUSIDE-array ME2E models are shown to achieve superior streaming results in both ID and OOD tests. Realistic evaluations confirm the advantage of CUSIDE-array in its capability to consume single-channel data to improve OOD generalization via back-end pre-training and ME2E fine-tuning.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3081437493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081437493</sourcerecordid><originalsourceid>FETCH-proquest_journals_30814374933</originalsourceid><addsrcrecordid>eNqNikELwiAYQCUIGrX_8EFnwXS11S2WUYcurc4hyzaH06Wu6N9X0A_o9OC9N0ARZWyGs4TSEYq9bwghdJHS-ZxFqMrPxX7DsXBOvFawhiI4KVplKjj0Oiic18IYqYGbKw4WfwBFJ2VZw1GWtjIqKGugePkgW3iq8PVCKx9UCfwhdC--g5-g4U1oL-Mfx2i65ad8hztn77304dLY3plPujCSzRKWJkvG_rveGFhGTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081437493</pqid></control><display><type>article</type><title>CUSIDE-array: A Streaming Multi-Channel End-to-End Speech Recognition System with Realistic Evaluations</title><source>Free E- Journals</source><creator>Kong, Xiangzhu ; Tianqi Ning ; Huang, Hao ; Ou, Zhijian</creator><creatorcontrib>Kong, Xiangzhu ; Tianqi Ning ; Huang, Hao ; Ou, Zhijian</creatorcontrib><description>Recently multi-channel end-to-end (ME2E) ASR systems have emerged. While streaming single-channel end-to-end ASR has been extensively studied, streaming ME2E ASR is limited in exploration. Additionally, recent studies call attention to the gap between in-distribution (ID) and out-of-distribution (OOD) tests and doing realistic evaluations. This paper focuses on two research problems: realizing streaming ME2E ASR and improving OOD generalization. We propose the CUSIDE-array method, which integrates the recent CUSIDE methodology (Chunking, Simulating Future Context and Decoding) into the neural beamformer approach of ME2E ASR. It enables streaming processing of both front-end and back-end with a total latency of 402ms. The CUSIDE-array ME2E models are shown to achieve superior streaming results in both ID and OOD tests. Realistic evaluations confirm the advantage of CUSIDE-array in its capability to consume single-channel data to improve OOD generalization via back-end pre-training and ME2E fine-tuning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Beamforming ; Speech recognition</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Kong, Xiangzhu</creatorcontrib><creatorcontrib>Tianqi Ning</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Ou, Zhijian</creatorcontrib><title>CUSIDE-array: A Streaming Multi-Channel End-to-End Speech Recognition System with Realistic Evaluations</title><title>arXiv.org</title><description>Recently multi-channel end-to-end (ME2E) ASR systems have emerged. While streaming single-channel end-to-end ASR has been extensively studied, streaming ME2E ASR is limited in exploration. Additionally, recent studies call attention to the gap between in-distribution (ID) and out-of-distribution (OOD) tests and doing realistic evaluations. This paper focuses on two research problems: realizing streaming ME2E ASR and improving OOD generalization. We propose the CUSIDE-array method, which integrates the recent CUSIDE methodology (Chunking, Simulating Future Context and Decoding) into the neural beamformer approach of ME2E ASR. It enables streaming processing of both front-end and back-end with a total latency of 402ms. The CUSIDE-array ME2E models are shown to achieve superior streaming results in both ID and OOD tests. Realistic evaluations confirm the advantage of CUSIDE-array in its capability to consume single-channel data to improve OOD generalization via back-end pre-training and ME2E fine-tuning.</description><subject>Arrays</subject><subject>Beamforming</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELwiAYQCUIGrX_8EFnwXS11S2WUYcurc4hyzaH06Wu6N9X0A_o9OC9N0ARZWyGs4TSEYq9bwghdJHS-ZxFqMrPxX7DsXBOvFawhiI4KVplKjj0Oiic18IYqYGbKw4WfwBFJ2VZw1GWtjIqKGugePkgW3iq8PVCKx9UCfwhdC--g5-g4U1oL-Mfx2i65ad8hztn77304dLY3plPujCSzRKWJkvG_rveGFhGTw</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Kong, Xiangzhu</creator><creator>Tianqi Ning</creator><creator>Huang, Hao</creator><creator>Ou, Zhijian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240917</creationdate><title>CUSIDE-array: A Streaming Multi-Channel End-to-End Speech Recognition System with Realistic Evaluations</title><author>Kong, Xiangzhu ; Tianqi Ning ; Huang, Hao ; Ou, Zhijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30814374933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Beamforming</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Kong, Xiangzhu</creatorcontrib><creatorcontrib>Tianqi Ning</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Ou, Zhijian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Xiangzhu</au><au>Tianqi Ning</au><au>Huang, Hao</au><au>Ou, Zhijian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CUSIDE-array: A Streaming Multi-Channel End-to-End Speech Recognition System with Realistic Evaluations</atitle><jtitle>arXiv.org</jtitle><date>2024-09-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recently multi-channel end-to-end (ME2E) ASR systems have emerged. While streaming single-channel end-to-end ASR has been extensively studied, streaming ME2E ASR is limited in exploration. Additionally, recent studies call attention to the gap between in-distribution (ID) and out-of-distribution (OOD) tests and doing realistic evaluations. This paper focuses on two research problems: realizing streaming ME2E ASR and improving OOD generalization. We propose the CUSIDE-array method, which integrates the recent CUSIDE methodology (Chunking, Simulating Future Context and Decoding) into the neural beamformer approach of ME2E ASR. It enables streaming processing of both front-end and back-end with a total latency of 402ms. The CUSIDE-array ME2E models are shown to achieve superior streaming results in both ID and OOD tests. Realistic evaluations confirm the advantage of CUSIDE-array in its capability to consume single-channel data to improve OOD generalization via back-end pre-training and ME2E fine-tuning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3081437493
source Free E- Journals
subjects Arrays
Beamforming
Speech recognition
title CUSIDE-array: A Streaming Multi-Channel End-to-End Speech Recognition System with Realistic Evaluations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CUSIDE-array:%20A%20Streaming%20Multi-Channel%20End-to-End%20Speech%20Recognition%20System%20with%20Realistic%20Evaluations&rft.jtitle=arXiv.org&rft.au=Kong,%20Xiangzhu&rft.date=2024-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3081437493%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081437493&rft_id=info:pmid/&rfr_iscdi=true