Solving a real-life multi-skill resource-constrained multi-project scheduling problem
This paper addresses a multi-skill resource-constrained multi-project scheduling problem (MSRCMPSP) with different types of resources and complex industrial constraints, which originates from SNCF heavy maintenance factories. Two objective functions, that have been rarely addressed in the literature...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2024-07, Vol.338 (1), p.69-114 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Annals of operations research |
container_volume | 338 |
creator | Torba, Rahman Dauzère-Pérès, Stéphane Yugma, Claude Gallais, Cédric Pouzet, Juliette |
description | This paper addresses a multi-skill resource-constrained multi-project scheduling problem (MSRCMPSP) with different types of resources and complex industrial constraints, which originates from SNCF heavy maintenance factories. Two objective functions, that have been rarely addressed in the literature, are independently considered: (i) Minimization of the sum of the weighted tardiness of the projects and (ii) Minimization of the sum of the weighted duration of the projects. A time-indexed mixed-integer linear programming model is presented with both resource assignment and capacity constraints. To solve large instances with several thousand activities, a new memetic algorithm combining a novel hybrid simulated genetic algorithm with a simulated annealing is implemented. The memetic algorithm is compared with popular solution approaches. Computational experiments conducted on real instances and benchmark instances validate the efficiency of the proposed algorithm. |
doi_str_mv | 10.1007/s10479-023-05784-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080876259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080876259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-da518383c4daaa3578447c525d023fe47547d1a4aff22f262f795eaa4e3435123</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgquoze5SdMuZfAFAy501iGmydgx045JK_j3ZuyAO1cXDud1DyGXDK4ZgLpJDISqKXCkIFUlqDoiMyYVpzVidUxmwKWgEhFOyVlKGwBgrJIzsnrpw1fbrQtTRGcCDa13xXYMQ0vTRxtCRlM_Ruuo7bs0RNN2rjkQdrHfODsUyb67Zgx7lwy9Bbc9JyfehOQuDndOVvd3r4tHunx-eFrcLqnFEgfaGMkqrNCKxhiD--JCWcllkx_xTigpVMOMMN5z7nnJvaqlM0Y4FCgZxzm5mnxz7ufo0qA3uWyXIzVCBZUquawzi08sG_uUovN6F9utid-agd7Pp6f5dE7Vv_NplUU4iVImd2sX_6z_Uf0AVfVzTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080876259</pqid></control><display><type>article</type><title>Solving a real-life multi-skill resource-constrained multi-project scheduling problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Torba, Rahman ; Dauzère-Pérès, Stéphane ; Yugma, Claude ; Gallais, Cédric ; Pouzet, Juliette</creator><creatorcontrib>Torba, Rahman ; Dauzère-Pérès, Stéphane ; Yugma, Claude ; Gallais, Cédric ; Pouzet, Juliette</creatorcontrib><description>This paper addresses a multi-skill resource-constrained multi-project scheduling problem (MSRCMPSP) with different types of resources and complex industrial constraints, which originates from SNCF heavy maintenance factories. Two objective functions, that have been rarely addressed in the literature, are independently considered: (i) Minimization of the sum of the weighted tardiness of the projects and (ii) Minimization of the sum of the weighted duration of the projects. A time-indexed mixed-integer linear programming model is presented with both resource assignment and capacity constraints. To solve large instances with several thousand activities, a new memetic algorithm combining a novel hybrid simulated genetic algorithm with a simulated annealing is implemented. The memetic algorithm is compared with popular solution approaches. Computational experiments conducted on real instances and benchmark instances validate the efficiency of the proposed algorithm.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-023-05784-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Combinatorics ; Constraints ; Genetic algorithms ; Integer programming ; Linear programming ; Mixed integer ; Operations management ; Operations Research/Decision Theory ; Optimization ; Original Research ; Project management ; Resource scheduling ; Scheduling ; Simulated annealing ; Skills ; Theory of Computation</subject><ispartof>Annals of operations research, 2024-07, Vol.338 (1), p.69-114</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-da518383c4daaa3578447c525d023fe47547d1a4aff22f262f795eaa4e3435123</citedby><cites>FETCH-LOGICAL-c363t-da518383c4daaa3578447c525d023fe47547d1a4aff22f262f795eaa4e3435123</cites><orcidid>0000-0001-7194-3880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-023-05784-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-023-05784-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Torba, Rahman</creatorcontrib><creatorcontrib>Dauzère-Pérès, Stéphane</creatorcontrib><creatorcontrib>Yugma, Claude</creatorcontrib><creatorcontrib>Gallais, Cédric</creatorcontrib><creatorcontrib>Pouzet, Juliette</creatorcontrib><title>Solving a real-life multi-skill resource-constrained multi-project scheduling problem</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>This paper addresses a multi-skill resource-constrained multi-project scheduling problem (MSRCMPSP) with different types of resources and complex industrial constraints, which originates from SNCF heavy maintenance factories. Two objective functions, that have been rarely addressed in the literature, are independently considered: (i) Minimization of the sum of the weighted tardiness of the projects and (ii) Minimization of the sum of the weighted duration of the projects. A time-indexed mixed-integer linear programming model is presented with both resource assignment and capacity constraints. To solve large instances with several thousand activities, a new memetic algorithm combining a novel hybrid simulated genetic algorithm with a simulated annealing is implemented. The memetic algorithm is compared with popular solution approaches. Computational experiments conducted on real instances and benchmark instances validate the efficiency of the proposed algorithm.</description><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Constraints</subject><subject>Genetic algorithms</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Operations management</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Project management</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Simulated annealing</subject><subject>Skills</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKxDAUDaLgOPoDrgquoze5SdMuZfAFAy501iGmydgx045JK_j3ZuyAO1cXDud1DyGXDK4ZgLpJDISqKXCkIFUlqDoiMyYVpzVidUxmwKWgEhFOyVlKGwBgrJIzsnrpw1fbrQtTRGcCDa13xXYMQ0vTRxtCRlM_Ruuo7bs0RNN2rjkQdrHfODsUyb67Zgx7lwy9Bbc9JyfehOQuDndOVvd3r4tHunx-eFrcLqnFEgfaGMkqrNCKxhiD--JCWcllkx_xTigpVMOMMN5z7nnJvaqlM0Y4FCgZxzm5mnxz7ufo0qA3uWyXIzVCBZUquawzi08sG_uUovN6F9utid-agd7Pp6f5dE7Vv_NplUU4iVImd2sX_6z_Uf0AVfVzTA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Torba, Rahman</creator><creator>Dauzère-Pérès, Stéphane</creator><creator>Yugma, Claude</creator><creator>Gallais, Cédric</creator><creator>Pouzet, Juliette</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7194-3880</orcidid></search><sort><creationdate>20240701</creationdate><title>Solving a real-life multi-skill resource-constrained multi-project scheduling problem</title><author>Torba, Rahman ; Dauzère-Pérès, Stéphane ; Yugma, Claude ; Gallais, Cédric ; Pouzet, Juliette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-da518383c4daaa3578447c525d023fe47547d1a4aff22f262f795eaa4e3435123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Constraints</topic><topic>Genetic algorithms</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Operations management</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Project management</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Simulated annealing</topic><topic>Skills</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torba, Rahman</creatorcontrib><creatorcontrib>Dauzère-Pérès, Stéphane</creatorcontrib><creatorcontrib>Yugma, Claude</creatorcontrib><creatorcontrib>Gallais, Cédric</creatorcontrib><creatorcontrib>Pouzet, Juliette</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torba, Rahman</au><au>Dauzère-Pérès, Stéphane</au><au>Yugma, Claude</au><au>Gallais, Cédric</au><au>Pouzet, Juliette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving a real-life multi-skill resource-constrained multi-project scheduling problem</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>338</volume><issue>1</issue><spage>69</spage><epage>114</epage><pages>69-114</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>This paper addresses a multi-skill resource-constrained multi-project scheduling problem (MSRCMPSP) with different types of resources and complex industrial constraints, which originates from SNCF heavy maintenance factories. Two objective functions, that have been rarely addressed in the literature, are independently considered: (i) Minimization of the sum of the weighted tardiness of the projects and (ii) Minimization of the sum of the weighted duration of the projects. A time-indexed mixed-integer linear programming model is presented with both resource assignment and capacity constraints. To solve large instances with several thousand activities, a new memetic algorithm combining a novel hybrid simulated genetic algorithm with a simulated annealing is implemented. The memetic algorithm is compared with popular solution approaches. Computational experiments conducted on real instances and benchmark instances validate the efficiency of the proposed algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-023-05784-7</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0001-7194-3880</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2024-07, Vol.338 (1), p.69-114 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_3080876259 |
source | SpringerLink Journals - AutoHoldings |
subjects | Business and Management Combinatorics Constraints Genetic algorithms Integer programming Linear programming Mixed integer Operations management Operations Research/Decision Theory Optimization Original Research Project management Resource scheduling Scheduling Simulated annealing Skills Theory of Computation |
title | Solving a real-life multi-skill resource-constrained multi-project scheduling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20a%20real-life%20multi-skill%20resource-constrained%20multi-project%20scheduling%20problem&rft.jtitle=Annals%20of%20operations%20research&rft.au=Torba,%20Rahman&rft.date=2024-07-01&rft.volume=338&rft.issue=1&rft.spage=69&rft.epage=114&rft.pages=69-114&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-023-05784-7&rft_dat=%3Cproquest_cross%3E3080876259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080876259&rft_id=info:pmid/&rfr_iscdi=true |