Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra
This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced...
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2024-08, Vol.31 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Numerical linear algebra with applications |
container_volume | 31 |
creator | Gaynutdinova, Liya Ladecký, Martin Pultarová, Ivana Vlasák, Miloslav Zeman, Jan |
description | This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems. |
doi_str_mv | 10.1002/nla.2549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080859752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080859752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2889-b4bfc665f8b9946aa6fa746bc6b22c65555cee85aa177b37e728351992b1128d3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhSbCd24rGqoCBVwACzZcdO65LaxU6ourGx8ow8CU7Dyl3u36dzr06SXCI4QRDiG9uICSY5O0pGCDKWIgLpcV8XMCUZJqfJWQhrCCElLBslX89eV84q0xpntQLKhNi2xnauC2AuGu3fjAUb3a6cAsIqENcfuurxn89vZeq6C0PttTiMwdY72ehNADvTrsCyE17YVkdx6TqrAmgd8Dp0TbyyBGEbxbw4T05q0QR98ZfHyevd7cvsPl08zR9m00Va4bJkqcxlXVFK6lIyllMhaC2KnMqKSowrSmJUWpdECFQUMit0gcuMIMawRAiXKhsnV4NufPK906Hla9d5G0_yDJawJKwgOFLXA1V5F4LXNd96sxF-zxHkvc082sx7myOaDujONHr_L8cfF9MD_wtM1YQK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080859752</pqid></control><display><type>article</type><title>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</title><source>Access via Wiley Online Library</source><creator>Gaynutdinova, Liya ; Ladecký, Martin ; Pultarová, Ivana ; Vlasák, Miloslav ; Zeman, Jan</creator><creatorcontrib>Gaynutdinova, Liya ; Ladecký, Martin ; Pultarová, Ivana ; Vlasák, Miloslav ; Zeman, Jan</creatorcontrib><description>This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2549</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Convection ; convection‐diffusion‐reaction problems ; discontinuous Galerkin method ; Discretization ; Eigenvalues ; Galerkin method ; Partial differential equations ; Preconditioning ; Second order PDEs ; skew‐symmetric matrix ; Sparse matrices ; Triangulation</subject><ispartof>Numerical linear algebra with applications, 2024-08, Vol.31 (4), p.n/a</ispartof><rights>2024 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2889-b4bfc665f8b9946aa6fa746bc6b22c65555cee85aa177b37e728351992b1128d3</cites><orcidid>0000-0003-0460-9270 ; 0000-0003-2503-8120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.2549$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.2549$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gaynutdinova, Liya</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><title>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</title><title>Numerical linear algebra with applications</title><description>This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems.</description><subject>Convection</subject><subject>convection‐diffusion‐reaction problems</subject><subject>discontinuous Galerkin method</subject><subject>Discretization</subject><subject>Eigenvalues</subject><subject>Galerkin method</subject><subject>Partial differential equations</subject><subject>Preconditioning</subject><subject>Second order PDEs</subject><subject>skew‐symmetric matrix</subject><subject>Sparse matrices</subject><subject>Triangulation</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhSbCd24rGqoCBVwACzZcdO65LaxU6ourGx8ow8CU7Dyl3u36dzr06SXCI4QRDiG9uICSY5O0pGCDKWIgLpcV8XMCUZJqfJWQhrCCElLBslX89eV84q0xpntQLKhNi2xnauC2AuGu3fjAUb3a6cAsIqENcfuurxn89vZeq6C0PttTiMwdY72ehNADvTrsCyE17YVkdx6TqrAmgd8Dp0TbyyBGEbxbw4T05q0QR98ZfHyevd7cvsPl08zR9m00Va4bJkqcxlXVFK6lIyllMhaC2KnMqKSowrSmJUWpdECFQUMit0gcuMIMawRAiXKhsnV4NufPK906Hla9d5G0_yDJawJKwgOFLXA1V5F4LXNd96sxF-zxHkvc082sx7myOaDujONHr_L8cfF9MD_wtM1YQK</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Gaynutdinova, Liya</creator><creator>Ladecký, Martin</creator><creator>Pultarová, Ivana</creator><creator>Vlasák, Miloslav</creator><creator>Zeman, Jan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid><orcidid>https://orcid.org/0000-0003-2503-8120</orcidid></search><sort><creationdate>202408</creationdate><title>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</title><author>Gaynutdinova, Liya ; Ladecký, Martin ; Pultarová, Ivana ; Vlasák, Miloslav ; Zeman, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2889-b4bfc665f8b9946aa6fa746bc6b22c65555cee85aa177b37e728351992b1128d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convection</topic><topic>convection‐diffusion‐reaction problems</topic><topic>discontinuous Galerkin method</topic><topic>Discretization</topic><topic>Eigenvalues</topic><topic>Galerkin method</topic><topic>Partial differential equations</topic><topic>Preconditioning</topic><topic>Second order PDEs</topic><topic>skew‐symmetric matrix</topic><topic>Sparse matrices</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaynutdinova, Liya</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaynutdinova, Liya</au><au>Ladecký, Martin</au><au>Pultarová, Ivana</au><au>Vlasák, Miloslav</au><au>Zeman, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2024-08</date><risdate>2024</risdate><volume>31</volume><issue>4</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2549</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid><orcidid>https://orcid.org/0000-0003-2503-8120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2024-08, Vol.31 (4), p.n/a |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_proquest_journals_3080859752 |
source | Access via Wiley Online Library |
subjects | Convection convection‐diffusion‐reaction problems discontinuous Galerkin method Discretization Eigenvalues Galerkin method Partial differential equations Preconditioning Second order PDEs skew‐symmetric matrix Sparse matrices Triangulation |
title | Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preconditioned%20discontinuous%20Galerkin%20method%20and%20convection%E2%80%90diffusion%E2%80%90reaction%20problems%20with%20guaranteed%20bounds%20to%20resulting%20spectra&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Gaynutdinova,%20Liya&rft.date=2024-08&rft.volume=31&rft.issue=4&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2549&rft_dat=%3Cproquest_cross%3E3080859752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080859752&rft_id=info:pmid/&rfr_iscdi=true |