Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra

This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2024-08, Vol.31 (4), p.n/a
Hauptverfasser: Gaynutdinova, Liya, Ladecký, Martin, Pultarová, Ivana, Vlasák, Miloslav, Zeman, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Numerical linear algebra with applications
container_volume 31
creator Gaynutdinova, Liya
Ladecký, Martin
Pultarová, Ivana
Vlasák, Miloslav
Zeman, Jan
description This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems.
doi_str_mv 10.1002/nla.2549
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080859752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080859752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2889-b4bfc665f8b9946aa6fa746bc6b22c65555cee85aa177b37e728351992b1128d3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhSbCd24rGqoCBVwACzZcdO65LaxU6ourGx8ow8CU7Dyl3u36dzr06SXCI4QRDiG9uICSY5O0pGCDKWIgLpcV8XMCUZJqfJWQhrCCElLBslX89eV84q0xpntQLKhNi2xnauC2AuGu3fjAUb3a6cAsIqENcfuurxn89vZeq6C0PttTiMwdY72ehNADvTrsCyE17YVkdx6TqrAmgd8Dp0TbyyBGEbxbw4T05q0QR98ZfHyevd7cvsPl08zR9m00Va4bJkqcxlXVFK6lIyllMhaC2KnMqKSowrSmJUWpdECFQUMit0gcuMIMawRAiXKhsnV4NufPK906Hla9d5G0_yDJawJKwgOFLXA1V5F4LXNd96sxF-zxHkvc082sx7myOaDujONHr_L8cfF9MD_wtM1YQK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080859752</pqid></control><display><type>article</type><title>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</title><source>Access via Wiley Online Library</source><creator>Gaynutdinova, Liya ; Ladecký, Martin ; Pultarová, Ivana ; Vlasák, Miloslav ; Zeman, Jan</creator><creatorcontrib>Gaynutdinova, Liya ; Ladecký, Martin ; Pultarová, Ivana ; Vlasák, Miloslav ; Zeman, Jan</creatorcontrib><description>This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2549</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Convection ; convection‐diffusion‐reaction problems ; discontinuous Galerkin method ; Discretization ; Eigenvalues ; Galerkin method ; Partial differential equations ; Preconditioning ; Second order PDEs ; skew‐symmetric matrix ; Sparse matrices ; Triangulation</subject><ispartof>Numerical linear algebra with applications, 2024-08, Vol.31 (4), p.n/a</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2889-b4bfc665f8b9946aa6fa746bc6b22c65555cee85aa177b37e728351992b1128d3</cites><orcidid>0000-0003-0460-9270 ; 0000-0003-2503-8120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.2549$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.2549$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gaynutdinova, Liya</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><title>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</title><title>Numerical linear algebra with applications</title><description>This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems.</description><subject>Convection</subject><subject>convection‐diffusion‐reaction problems</subject><subject>discontinuous Galerkin method</subject><subject>Discretization</subject><subject>Eigenvalues</subject><subject>Galerkin method</subject><subject>Partial differential equations</subject><subject>Preconditioning</subject><subject>Second order PDEs</subject><subject>skew‐symmetric matrix</subject><subject>Sparse matrices</subject><subject>Triangulation</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kL1OwzAUhSMEEqUg8QiWWFhSbCd24rGqoCBVwACzZcdO65LaxU6ourGx8ow8CU7Dyl3u36dzr06SXCI4QRDiG9uICSY5O0pGCDKWIgLpcV8XMCUZJqfJWQhrCCElLBslX89eV84q0xpntQLKhNi2xnauC2AuGu3fjAUb3a6cAsIqENcfuurxn89vZeq6C0PttTiMwdY72ehNADvTrsCyE17YVkdx6TqrAmgd8Dp0TbyyBGEbxbw4T05q0QR98ZfHyevd7cvsPl08zR9m00Va4bJkqcxlXVFK6lIyllMhaC2KnMqKSowrSmJUWpdECFQUMit0gcuMIMawRAiXKhsnV4NufPK906Hla9d5G0_yDJawJKwgOFLXA1V5F4LXNd96sxF-zxHkvc082sx7myOaDujONHr_L8cfF9MD_wtM1YQK</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Gaynutdinova, Liya</creator><creator>Ladecký, Martin</creator><creator>Pultarová, Ivana</creator><creator>Vlasák, Miloslav</creator><creator>Zeman, Jan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid><orcidid>https://orcid.org/0000-0003-2503-8120</orcidid></search><sort><creationdate>202408</creationdate><title>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</title><author>Gaynutdinova, Liya ; Ladecký, Martin ; Pultarová, Ivana ; Vlasák, Miloslav ; Zeman, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2889-b4bfc665f8b9946aa6fa746bc6b22c65555cee85aa177b37e728351992b1128d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convection</topic><topic>convection‐diffusion‐reaction problems</topic><topic>discontinuous Galerkin method</topic><topic>Discretization</topic><topic>Eigenvalues</topic><topic>Galerkin method</topic><topic>Partial differential equations</topic><topic>Preconditioning</topic><topic>Second order PDEs</topic><topic>skew‐symmetric matrix</topic><topic>Sparse matrices</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaynutdinova, Liya</creatorcontrib><creatorcontrib>Ladecký, Martin</creatorcontrib><creatorcontrib>Pultarová, Ivana</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaynutdinova, Liya</au><au>Ladecký, Martin</au><au>Pultarová, Ivana</au><au>Vlasák, Miloslav</au><au>Zeman, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2024-08</date><risdate>2024</risdate><volume>31</volume><issue>4</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection‐diffusion‐reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection‐)diffusion‐reaction problems.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2549</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0460-9270</orcidid><orcidid>https://orcid.org/0000-0003-2503-8120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2024-08, Vol.31 (4), p.n/a
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_journals_3080859752
source Access via Wiley Online Library
subjects Convection
convection‐diffusion‐reaction problems
discontinuous Galerkin method
Discretization
Eigenvalues
Galerkin method
Partial differential equations
Preconditioning
Second order PDEs
skew‐symmetric matrix
Sparse matrices
Triangulation
title Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preconditioned%20discontinuous%20Galerkin%20method%20and%20convection%E2%80%90diffusion%E2%80%90reaction%20problems%20with%20guaranteed%20bounds%20to%20resulting%20spectra&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Gaynutdinova,%20Liya&rft.date=2024-08&rft.volume=31&rft.issue=4&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2549&rft_dat=%3Cproquest_cross%3E3080859752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080859752&rft_id=info:pmid/&rfr_iscdi=true