Total positivity and least squares problems in the Lagrange basis

Summary The problem of polynomial least squares fitting in the standard Lagrange basis is addressed in this work. Although the matrices involved in the corresponding overdetermined linear systems are not totally positive, rectangular totally positive Lagrange‐Vandermonde matrices are used to take ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2024-08, Vol.31 (4), p.n/a
Hauptverfasser: Marco, Ana, Martínez, José‐Javier, Viaña, Raquel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Numerical linear algebra with applications
container_volume 31
creator Marco, Ana
Martínez, José‐Javier
Viaña, Raquel
description Summary The problem of polynomial least squares fitting in the standard Lagrange basis is addressed in this work. Although the matrices involved in the corresponding overdetermined linear systems are not totally positive, rectangular totally positive Lagrange‐Vandermonde matrices are used to take advantage of total positivity in the construction of accurate algorithms to solve the considered problem. In particular, a fast and accurate algorithm to compute the bidiagonal decomposition of such rectangular totally positive matrices is crucial to solve the problem. This algorithm also allows the accurate computation of the Moore‐Penrose inverse and the projection matrix of the collocation matrices involved in these problems. Numerical experiments showing the good behaviour of the proposed algorithms are included.
doi_str_mv 10.1002/nla.2554
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080859750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080859750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2884-8e44a06842675d56f07c3c1ecbded08b5141d243b3b7cf81c92a4c1f93d2fd8c3</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpSPwESywsKeevxBmrii8pgqXMlmM7xVWatL4U1H9PSlmZ7oZH751eQm4ZzBgAf-haO-NKyTMyYVCWGVOQnx_3AjIluLokV4hrAMhVKSZkvuwH29Jtj3GIX3E4UNt52gaLA8Xd3qaAdJv6ug0bpLGjw2eglV0l260CrS1GvCYXjW0x3PzNKfl4elwuXrLq_fl1Ma8yx7WWmQ5SWsi15HmhvMobKJxwLLjaBw-6Vkwyz6WoRV24RjNXcisda0rheeO1E1Nyd8od39ntAw5m3e9TN540AjRoVRYKRnV_Ui71iCk0ZpvixqaDYWCOBZmxIHMsaKTZiX7HNhz-deatmv_6H6ITZkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080859750</pqid></control><display><type>article</type><title>Total positivity and least squares problems in the Lagrange basis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Marco, Ana ; Martínez, José‐Javier ; Viaña, Raquel</creator><creatorcontrib>Marco, Ana ; Martínez, José‐Javier ; Viaña, Raquel</creatorcontrib><description>Summary The problem of polynomial least squares fitting in the standard Lagrange basis is addressed in this work. Although the matrices involved in the corresponding overdetermined linear systems are not totally positive, rectangular totally positive Lagrange‐Vandermonde matrices are used to take advantage of total positivity in the construction of accurate algorithms to solve the considered problem. In particular, a fast and accurate algorithm to compute the bidiagonal decomposition of such rectangular totally positive matrices is crucial to solve the problem. This algorithm also allows the accurate computation of the Moore‐Penrose inverse and the projection matrix of the collocation matrices involved in these problems. Numerical experiments showing the good behaviour of the proposed algorithms are included.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2554</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; bidiagonal decomposition ; high relative accuracy ; Lagrange basis ; Least squares ; Linear systems ; Moore‐Penrose inverse ; Polynomials ; projection matrix ; total positivity</subject><ispartof>Numerical linear algebra with applications, 2024-08, Vol.31 (4), p.n/a</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2884-8e44a06842675d56f07c3c1ecbded08b5141d243b3b7cf81c92a4c1f93d2fd8c3</cites><orcidid>0009-0003-6517-0174 ; 0000-0002-8322-0361 ; 0000-0003-4662-6327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.2554$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.2554$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Marco, Ana</creatorcontrib><creatorcontrib>Martínez, José‐Javier</creatorcontrib><creatorcontrib>Viaña, Raquel</creatorcontrib><title>Total positivity and least squares problems in the Lagrange basis</title><title>Numerical linear algebra with applications</title><description>Summary The problem of polynomial least squares fitting in the standard Lagrange basis is addressed in this work. Although the matrices involved in the corresponding overdetermined linear systems are not totally positive, rectangular totally positive Lagrange‐Vandermonde matrices are used to take advantage of total positivity in the construction of accurate algorithms to solve the considered problem. In particular, a fast and accurate algorithm to compute the bidiagonal decomposition of such rectangular totally positive matrices is crucial to solve the problem. This algorithm also allows the accurate computation of the Moore‐Penrose inverse and the projection matrix of the collocation matrices involved in these problems. Numerical experiments showing the good behaviour of the proposed algorithms are included.</description><subject>Algorithms</subject><subject>bidiagonal decomposition</subject><subject>high relative accuracy</subject><subject>Lagrange basis</subject><subject>Least squares</subject><subject>Linear systems</subject><subject>Moore‐Penrose inverse</subject><subject>Polynomials</subject><subject>projection matrix</subject><subject>total positivity</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10D1PwzAQBmALgUQpSPwESywsKeevxBmrii8pgqXMlmM7xVWatL4U1H9PSlmZ7oZH751eQm4ZzBgAf-haO-NKyTMyYVCWGVOQnx_3AjIluLokV4hrAMhVKSZkvuwH29Jtj3GIX3E4UNt52gaLA8Xd3qaAdJv6ug0bpLGjw2eglV0l260CrS1GvCYXjW0x3PzNKfl4elwuXrLq_fl1Ma8yx7WWmQ5SWsi15HmhvMobKJxwLLjaBw-6Vkwyz6WoRV24RjNXcisda0rheeO1E1Nyd8od39ntAw5m3e9TN540AjRoVRYKRnV_Ui71iCk0ZpvixqaDYWCOBZmxIHMsaKTZiX7HNhz-deatmv_6H6ITZkc</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Marco, Ana</creator><creator>Martínez, José‐Javier</creator><creator>Viaña, Raquel</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0003-6517-0174</orcidid><orcidid>https://orcid.org/0000-0002-8322-0361</orcidid><orcidid>https://orcid.org/0000-0003-4662-6327</orcidid></search><sort><creationdate>202408</creationdate><title>Total positivity and least squares problems in the Lagrange basis</title><author>Marco, Ana ; Martínez, José‐Javier ; Viaña, Raquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2884-8e44a06842675d56f07c3c1ecbded08b5141d243b3b7cf81c92a4c1f93d2fd8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>bidiagonal decomposition</topic><topic>high relative accuracy</topic><topic>Lagrange basis</topic><topic>Least squares</topic><topic>Linear systems</topic><topic>Moore‐Penrose inverse</topic><topic>Polynomials</topic><topic>projection matrix</topic><topic>total positivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marco, Ana</creatorcontrib><creatorcontrib>Martínez, José‐Javier</creatorcontrib><creatorcontrib>Viaña, Raquel</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marco, Ana</au><au>Martínez, José‐Javier</au><au>Viaña, Raquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total positivity and least squares problems in the Lagrange basis</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2024-08</date><risdate>2024</risdate><volume>31</volume><issue>4</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Summary The problem of polynomial least squares fitting in the standard Lagrange basis is addressed in this work. Although the matrices involved in the corresponding overdetermined linear systems are not totally positive, rectangular totally positive Lagrange‐Vandermonde matrices are used to take advantage of total positivity in the construction of accurate algorithms to solve the considered problem. In particular, a fast and accurate algorithm to compute the bidiagonal decomposition of such rectangular totally positive matrices is crucial to solve the problem. This algorithm also allows the accurate computation of the Moore‐Penrose inverse and the projection matrix of the collocation matrices involved in these problems. Numerical experiments showing the good behaviour of the proposed algorithms are included.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2554</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0003-6517-0174</orcidid><orcidid>https://orcid.org/0000-0002-8322-0361</orcidid><orcidid>https://orcid.org/0000-0003-4662-6327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2024-08, Vol.31 (4), p.n/a
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_journals_3080859750
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
bidiagonal decomposition
high relative accuracy
Lagrange basis
Least squares
Linear systems
Moore‐Penrose inverse
Polynomials
projection matrix
total positivity
title Total positivity and least squares problems in the Lagrange basis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20positivity%20and%20least%20squares%20problems%20in%20the%20Lagrange%20basis&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Marco,%20Ana&rft.date=2024-08&rft.volume=31&rft.issue=4&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2554&rft_dat=%3Cproquest_cross%3E3080859750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080859750&rft_id=info:pmid/&rfr_iscdi=true