Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells

Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high‐efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-07, Vol.136 (30), p.n/a
Hauptverfasser: Liu, Jian, Chen, Jiujiang, Xie, Lisha, Yang, Shuncheng, Meng, Yuanyuan, Li, Minghui, Xiao, Chuanxiao, Zhu, Jintao, Do, Hainam, Zhang, Jiajia, Yang, Mengjin, Ge, Ziyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Liu, Jian
Chen, Jiujiang
Xie, Lisha
Yang, Shuncheng
Meng, Yuanyuan
Li, Minghui
Xiao, Chuanxiao
Zhu, Jintao
Do, Hainam
Zhang, Jiajia
Yang, Mengjin
Ge, Ziyi
description Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high‐efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron‐donating (−SH) and electron‐withdrawing (−NH3+) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n‐type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25 % was achieved, maintaining 95 % of its initial efficiency after 500 hours of continuous maximum power point tracking. Aminothiol hydrochlorides with different alkyl chains were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientation, enhancing its interaction with surface defects. Consequently, this led to the successful fabrication of a stable inverted device with an impressive PCE of 25 %.
doi_str_mv 10.1002/ange.202403610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080030518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080030518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1170-f3ff15c93ad7b862f64fd7a80720c964b58f1ff0d1c8f1e813d0297baa6dee9a3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqVw5WyJc8razvNYhVIqFVqJco6cZA1uTVzspKj_npQiOHLakeabWWkIuWYwYgD8VjavOOLAQxAxgxMyYBFngUii5JQMAMIwSHmYnZML79cAEPMkGxA1Npu9ofmb1I2nq65B-mgNVp2Rji6cxqaVrba911o6aWRpkN510tCl9F7vvj2qGzprduharOkSnd35jW6RPttDSY7G-EtypqTxePVzh-TlfrLKH4L5YjrLx_OgYiyBQAmlWFRlQtZJmcZcxaGqE5lCwqHK4rCMUsWUgppVvcCUiRp4lpRSxjViJsWQ3Bx7t85-dOjbYm071_QvCwEpgICIpT01OlKVs947VMXW6Xfp9gWD4rBlcdiy-N2yD2THwKc2uP-HLsZP08lf9gteA3kv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080030518</pqid></control><display><type>article</type><title>Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Jian ; Chen, Jiujiang ; Xie, Lisha ; Yang, Shuncheng ; Meng, Yuanyuan ; Li, Minghui ; Xiao, Chuanxiao ; Zhu, Jintao ; Do, Hainam ; Zhang, Jiajia ; Yang, Mengjin ; Ge, Ziyi</creator><creatorcontrib>Liu, Jian ; Chen, Jiujiang ; Xie, Lisha ; Yang, Shuncheng ; Meng, Yuanyuan ; Li, Minghui ; Xiao, Chuanxiao ; Zhu, Jintao ; Do, Hainam ; Zhang, Jiajia ; Yang, Mengjin ; Ge, Ziyi</creatorcontrib><description>Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high‐efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron‐donating (−SH) and electron‐withdrawing (−NH3+) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n‐type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25 % was achieved, maintaining 95 % of its initial efficiency after 500 hours of continuous maximum power point tracking. Aminothiol hydrochlorides with different alkyl chains were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientation, enhancing its interaction with surface defects. Consequently, this led to the successful fabrication of a stable inverted device with an impressive PCE of 25 %.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202403610</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Bonding strength ; Chemical bonds ; Efficiency ; Electron transfer ; Energy conversion efficiency ; Functional groups ; Hydrochlorides ; Hydrogen bonding ; Ion migration ; Maximum power tracking ; Molecular chains ; Molecular structure ; n-type solar cells ; parallel orientation ; passivation ; Passivity ; Perovskites ; Photovoltaic cells ; Recombination ; Solar cells ; Surface defects</subject><ispartof>Angewandte Chemie, 2024-07, Vol.136 (30), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1170-f3ff15c93ad7b862f64fd7a80720c964b58f1ff0d1c8f1e813d0297baa6dee9a3</cites><orcidid>0000-0003-2019-4298 ; 0000-0003-3656-6017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202403610$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202403610$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Chen, Jiujiang</creatorcontrib><creatorcontrib>Xie, Lisha</creatorcontrib><creatorcontrib>Yang, Shuncheng</creatorcontrib><creatorcontrib>Meng, Yuanyuan</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Zhu, Jintao</creatorcontrib><creatorcontrib>Do, Hainam</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Yang, Mengjin</creatorcontrib><creatorcontrib>Ge, Ziyi</creatorcontrib><title>Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells</title><title>Angewandte Chemie</title><description>Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high‐efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron‐donating (−SH) and electron‐withdrawing (−NH3+) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n‐type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25 % was achieved, maintaining 95 % of its initial efficiency after 500 hours of continuous maximum power point tracking. Aminothiol hydrochlorides with different alkyl chains were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientation, enhancing its interaction with surface defects. Consequently, this led to the successful fabrication of a stable inverted device with an impressive PCE of 25 %.</description><subject>Ammonia</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Efficiency</subject><subject>Electron transfer</subject><subject>Energy conversion efficiency</subject><subject>Functional groups</subject><subject>Hydrochlorides</subject><subject>Hydrogen bonding</subject><subject>Ion migration</subject><subject>Maximum power tracking</subject><subject>Molecular chains</subject><subject>Molecular structure</subject><subject>n-type solar cells</subject><subject>parallel orientation</subject><subject>passivation</subject><subject>Passivity</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Recombination</subject><subject>Solar cells</subject><subject>Surface defects</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqVw5WyJc8razvNYhVIqFVqJco6cZA1uTVzspKj_npQiOHLakeabWWkIuWYwYgD8VjavOOLAQxAxgxMyYBFngUii5JQMAMIwSHmYnZML79cAEPMkGxA1Npu9ofmb1I2nq65B-mgNVp2Rji6cxqaVrba911o6aWRpkN510tCl9F7vvj2qGzprduharOkSnd35jW6RPttDSY7G-EtypqTxePVzh-TlfrLKH4L5YjrLx_OgYiyBQAmlWFRlQtZJmcZcxaGqE5lCwqHK4rCMUsWUgppVvcCUiRp4lpRSxjViJsWQ3Bx7t85-dOjbYm071_QvCwEpgICIpT01OlKVs947VMXW6Xfp9gWD4rBlcdiy-N2yD2THwKc2uP-HLsZP08lf9gteA3kv</recordid><startdate>20240722</startdate><enddate>20240722</enddate><creator>Liu, Jian</creator><creator>Chen, Jiujiang</creator><creator>Xie, Lisha</creator><creator>Yang, Shuncheng</creator><creator>Meng, Yuanyuan</creator><creator>Li, Minghui</creator><creator>Xiao, Chuanxiao</creator><creator>Zhu, Jintao</creator><creator>Do, Hainam</creator><creator>Zhang, Jiajia</creator><creator>Yang, Mengjin</creator><creator>Ge, Ziyi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2019-4298</orcidid><orcidid>https://orcid.org/0000-0003-3656-6017</orcidid></search><sort><creationdate>20240722</creationdate><title>Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells</title><author>Liu, Jian ; Chen, Jiujiang ; Xie, Lisha ; Yang, Shuncheng ; Meng, Yuanyuan ; Li, Minghui ; Xiao, Chuanxiao ; Zhu, Jintao ; Do, Hainam ; Zhang, Jiajia ; Yang, Mengjin ; Ge, Ziyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1170-f3ff15c93ad7b862f64fd7a80720c964b58f1ff0d1c8f1e813d0297baa6dee9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Efficiency</topic><topic>Electron transfer</topic><topic>Energy conversion efficiency</topic><topic>Functional groups</topic><topic>Hydrochlorides</topic><topic>Hydrogen bonding</topic><topic>Ion migration</topic><topic>Maximum power tracking</topic><topic>Molecular chains</topic><topic>Molecular structure</topic><topic>n-type solar cells</topic><topic>parallel orientation</topic><topic>passivation</topic><topic>Passivity</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Recombination</topic><topic>Solar cells</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Chen, Jiujiang</creatorcontrib><creatorcontrib>Xie, Lisha</creatorcontrib><creatorcontrib>Yang, Shuncheng</creatorcontrib><creatorcontrib>Meng, Yuanyuan</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Xiao, Chuanxiao</creatorcontrib><creatorcontrib>Zhu, Jintao</creatorcontrib><creatorcontrib>Do, Hainam</creatorcontrib><creatorcontrib>Zhang, Jiajia</creatorcontrib><creatorcontrib>Yang, Mengjin</creatorcontrib><creatorcontrib>Ge, Ziyi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jian</au><au>Chen, Jiujiang</au><au>Xie, Lisha</au><au>Yang, Shuncheng</au><au>Meng, Yuanyuan</au><au>Li, Minghui</au><au>Xiao, Chuanxiao</au><au>Zhu, Jintao</au><au>Do, Hainam</au><au>Zhang, Jiajia</au><au>Yang, Mengjin</au><au>Ge, Ziyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-07-22</date><risdate>2024</risdate><volume>136</volume><issue>30</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high‐efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron‐donating (−SH) and electron‐withdrawing (−NH3+) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n‐type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25 % was achieved, maintaining 95 % of its initial efficiency after 500 hours of continuous maximum power point tracking. Aminothiol hydrochlorides with different alkyl chains were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2‐Aminoethane‐1‐thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientation, enhancing its interaction with surface defects. Consequently, this led to the successful fabrication of a stable inverted device with an impressive PCE of 25 %.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202403610</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2019-4298</orcidid><orcidid>https://orcid.org/0000-0003-3656-6017</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-07, Vol.136 (30), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3080030518
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Bonding strength
Chemical bonds
Efficiency
Electron transfer
Energy conversion efficiency
Functional groups
Hydrochlorides
Hydrogen bonding
Ion migration
Maximum power tracking
Molecular chains
Molecular structure
n-type solar cells
parallel orientation
passivation
Passivity
Perovskites
Photovoltaic cells
Recombination
Solar cells
Surface defects
title Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkyl%20Chains%20Tune%20Molecular%20Orientations%20to%20Enable%20Dual%20Passivation%20in%20Inverted%20Perovskite%20Solar%20Cells&rft.jtitle=Angewandte%20Chemie&rft.au=Liu,%20Jian&rft.date=2024-07-22&rft.volume=136&rft.issue=30&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202403610&rft_dat=%3Cproquest_cross%3E3080030518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080030518&rft_id=info:pmid/&rfr_iscdi=true