A Mass-Conservative Reduced-Order Algorithm in Solving Optimal Control of Convection-Diffusion Equation

This paper introduces a novel approach, the mass-conservative reduced-order characteristic finite element (MCROCFE) method, designed for optimal control problem governed by convection-diffusion equation. The study delves into scenarios where the original state equation exhibits mass-conservation, ye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2024-09, Vol.100 (3), p.65, Article 65
Hauptverfasser: Song, Junpeng, Wu, Qiuqin, Shi, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 65
container_title Journal of scientific computing
container_volume 100
creator Song, Junpeng
Wu, Qiuqin
Shi, Yi
description This paper introduces a novel approach, the mass-conservative reduced-order characteristic finite element (MCROCFE) method, designed for optimal control problem governed by convection-diffusion equation. The study delves into scenarios where the original state equation exhibits mass-conservation, yet the velocity field is non-divergence-free. The key points of emphasis are: (1) The method effectively addresses convection-dominated diffusion systems through the application of the characteristic technique; (2) Its efficiency is underscored by leveraging the proper orthogonal decomposition (POD) technique, significantly reducing the scale of solving algebraic equation systems; (3) The proposed scheme, based on the mass-conservative characteristic finite element (MCCFE) method framework and the classical POD technique with a slight adjustment to reduce-order space, maintains mass-conservation for the state variable. A priori error estimates are derived for the mass-conservative reduced-order scheme. Theoretical results are validated through numerical comparisons with the MCCFE method, emphasizing the mass-conservation, accuracy and efficiency of the MCROCFE method.
doi_str_mv 10.1007/s10915-024-02620-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3080008329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080008329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-87b55acbb991a2b50bfb2fcc5327fabe90606d3feb75c62202d1ba14855afa73</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0jbtcVnXP7CyoHsPSZvULt1mN2kLfnuzVvDmYZhheL8Z3kPolsI9BRAPgUJBUwIsiZUxIPwMzWgqOBFZQc_RDPI8JSIRySW6CmEHAEVesBmqF_hNhUCWrgvGj6pvRoPfTTWUpiIbXxmPF23tfNN_7nHT4Q_Xjk1X482hb_aqxZHrvWuxs6dxNGXfuI48NtYOIU54dRzUaXWNLqxqg7n57XO0fVptly9kvXl-XS7WpGQAPcmFTlNVal0UVDGdgraa2bJMORNWaVNABlnFrdEiLTPGgFVUK5rkkbJK8Dm6m84evDsOJvRy5wbfxY-SQx5d55wVUcUmVeldCN5YefDRjf-SFOQpTznlKWOe8idPySPEJyhEcVcb_3f6H-obViZ5oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080008329</pqid></control><display><type>article</type><title>A Mass-Conservative Reduced-Order Algorithm in Solving Optimal Control of Convection-Diffusion Equation</title><source>SpringerNature Journals</source><creator>Song, Junpeng ; Wu, Qiuqin ; Shi, Yi</creator><creatorcontrib>Song, Junpeng ; Wu, Qiuqin ; Shi, Yi</creatorcontrib><description>This paper introduces a novel approach, the mass-conservative reduced-order characteristic finite element (MCROCFE) method, designed for optimal control problem governed by convection-diffusion equation. The study delves into scenarios where the original state equation exhibits mass-conservation, yet the velocity field is non-divergence-free. The key points of emphasis are: (1) The method effectively addresses convection-dominated diffusion systems through the application of the characteristic technique; (2) Its efficiency is underscored by leveraging the proper orthogonal decomposition (POD) technique, significantly reducing the scale of solving algebraic equation systems; (3) The proposed scheme, based on the mass-conservative characteristic finite element (MCCFE) method framework and the classical POD technique with a slight adjustment to reduce-order space, maintains mass-conservation for the state variable. A priori error estimates are derived for the mass-conservative reduced-order scheme. Theoretical results are validated through numerical comparisons with the MCCFE method, emphasizing the mass-conservation, accuracy and efficiency of the MCROCFE method.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02620-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Conservation ; Convection-diffusion equation ; Divergence ; Efficiency ; Equations of state ; Finite element analysis ; Hypotheses ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Methods ; Optimal control ; Proper Orthogonal Decomposition ; Theoretical ; Velocity distribution</subject><ispartof>Journal of scientific computing, 2024-09, Vol.100 (3), p.65, Article 65</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-87b55acbb991a2b50bfb2fcc5327fabe90606d3feb75c62202d1ba14855afa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-024-02620-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10915-024-02620-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Junpeng</creatorcontrib><creatorcontrib>Wu, Qiuqin</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><title>A Mass-Conservative Reduced-Order Algorithm in Solving Optimal Control of Convection-Diffusion Equation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>This paper introduces a novel approach, the mass-conservative reduced-order characteristic finite element (MCROCFE) method, designed for optimal control problem governed by convection-diffusion equation. The study delves into scenarios where the original state equation exhibits mass-conservation, yet the velocity field is non-divergence-free. The key points of emphasis are: (1) The method effectively addresses convection-dominated diffusion systems through the application of the characteristic technique; (2) Its efficiency is underscored by leveraging the proper orthogonal decomposition (POD) technique, significantly reducing the scale of solving algebraic equation systems; (3) The proposed scheme, based on the mass-conservative characteristic finite element (MCCFE) method framework and the classical POD technique with a slight adjustment to reduce-order space, maintains mass-conservation for the state variable. A priori error estimates are derived for the mass-conservative reduced-order scheme. Theoretical results are validated through numerical comparisons with the MCCFE method, emphasizing the mass-conservation, accuracy and efficiency of the MCROCFE method.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Conservation</subject><subject>Convection-diffusion equation</subject><subject>Divergence</subject><subject>Efficiency</subject><subject>Equations of state</subject><subject>Finite element analysis</subject><subject>Hypotheses</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Optimal control</subject><subject>Proper Orthogonal Decomposition</subject><subject>Theoretical</subject><subject>Velocity distribution</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0jbtcVnXP7CyoHsPSZvULt1mN2kLfnuzVvDmYZhheL8Z3kPolsI9BRAPgUJBUwIsiZUxIPwMzWgqOBFZQc_RDPI8JSIRySW6CmEHAEVesBmqF_hNhUCWrgvGj6pvRoPfTTWUpiIbXxmPF23tfNN_7nHT4Q_Xjk1X482hb_aqxZHrvWuxs6dxNGXfuI48NtYOIU54dRzUaXWNLqxqg7n57XO0fVptly9kvXl-XS7WpGQAPcmFTlNVal0UVDGdgraa2bJMORNWaVNABlnFrdEiLTPGgFVUK5rkkbJK8Dm6m84evDsOJvRy5wbfxY-SQx5d55wVUcUmVeldCN5YefDRjf-SFOQpTznlKWOe8idPySPEJyhEcVcb_3f6H-obViZ5oQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Song, Junpeng</creator><creator>Wu, Qiuqin</creator><creator>Shi, Yi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>A Mass-Conservative Reduced-Order Algorithm in Solving Optimal Control of Convection-Diffusion Equation</title><author>Song, Junpeng ; Wu, Qiuqin ; Shi, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-87b55acbb991a2b50bfb2fcc5327fabe90606d3feb75c62202d1ba14855afa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Conservation</topic><topic>Convection-diffusion equation</topic><topic>Divergence</topic><topic>Efficiency</topic><topic>Equations of state</topic><topic>Finite element analysis</topic><topic>Hypotheses</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Optimal control</topic><topic>Proper Orthogonal Decomposition</topic><topic>Theoretical</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Junpeng</creatorcontrib><creatorcontrib>Wu, Qiuqin</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Junpeng</au><au>Wu, Qiuqin</au><au>Shi, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mass-Conservative Reduced-Order Algorithm in Solving Optimal Control of Convection-Diffusion Equation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>100</volume><issue>3</issue><spage>65</spage><pages>65-</pages><artnum>65</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>This paper introduces a novel approach, the mass-conservative reduced-order characteristic finite element (MCROCFE) method, designed for optimal control problem governed by convection-diffusion equation. The study delves into scenarios where the original state equation exhibits mass-conservation, yet the velocity field is non-divergence-free. The key points of emphasis are: (1) The method effectively addresses convection-dominated diffusion systems through the application of the characteristic technique; (2) Its efficiency is underscored by leveraging the proper orthogonal decomposition (POD) technique, significantly reducing the scale of solving algebraic equation systems; (3) The proposed scheme, based on the mass-conservative characteristic finite element (MCCFE) method framework and the classical POD technique with a slight adjustment to reduce-order space, maintains mass-conservation for the state variable. A priori error estimates are derived for the mass-conservative reduced-order scheme. Theoretical results are validated through numerical comparisons with the MCCFE method, emphasizing the mass-conservation, accuracy and efficiency of the MCROCFE method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02620-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2024-09, Vol.100 (3), p.65, Article 65
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_3080008329
source SpringerNature Journals
subjects Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Conservation
Convection-diffusion equation
Divergence
Efficiency
Equations of state
Finite element analysis
Hypotheses
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Optimal control
Proper Orthogonal Decomposition
Theoretical
Velocity distribution
title A Mass-Conservative Reduced-Order Algorithm in Solving Optimal Control of Convection-Diffusion Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mass-Conservative%20Reduced-Order%20Algorithm%20in%20Solving%20Optimal%20Control%20of%20Convection-Diffusion%20Equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Song,%20Junpeng&rft.date=2024-09-01&rft.volume=100&rft.issue=3&rft.spage=65&rft.pages=65-&rft.artnum=65&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02620-3&rft_dat=%3Cproquest_cross%3E3080008329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080008329&rft_id=info:pmid/&rfr_iscdi=true