Quasisynchronization of reaction-diffusion neural networks with time-varying delays by static/dynamic event-triggered control and its application to secure communication

This paper studies the quasisynchronization problems of reaction-diffusion neural networks (RDNNs) with time-varying delays via event-triggered control. Firstly, a static event-triggered mechanism and a dynamic event-triggered mechanism are designed to significantly reduce computation costs and save...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2024-07, Vol.36 (21), p.13171-13186
Hauptverfasser: Cao, Yanyi, Liu, Nian, Zhang, Tao, Zhang, Chuanfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13186
container_issue 21
container_start_page 13171
container_title Neural computing & applications
container_volume 36
creator Cao, Yanyi
Liu, Nian
Zhang, Tao
Zhang, Chuanfu
description This paper studies the quasisynchronization problems of reaction-diffusion neural networks (RDNNs) with time-varying delays via event-triggered control. Firstly, a static event-triggered mechanism and a dynamic event-triggered mechanism are designed to significantly reduce computation costs and save communication resources, respectively. These two different event-triggered control strategies are also able to meet the requirements of various situations. Based on the static event-triggered mechanism, the dynamic event-triggered mechanism is designed to further reduce the sampling frequency by introducing an internal dynamic variable, and several quasisynchronization criteria are derived. However, the quasisynchronization error bounds are related to triggering parameters and can be flexible adjusted, which reduces the conservatism of the existing quasisynchronization results and extends the application of proposed control strategies. Meanwhile, there exists positive lower bounds for the inter event time which can exclude the Zeno behavior. Finally, numerical simulations are given to demonstrate the superiority of the obtained theoretical results, and one example is given to show the chaotic quasisynchronization of the proposed RDNNs in the application of secure communication.
doi_str_mv 10.1007/s00521-024-09778-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3079657675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079657675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1859-9c3d4603243fa075bc82eb64db90f69373cc9d7a7772d242d8aeebdee87d0da53</originalsourceid><addsrcrecordid>eNp9UU1v1TAQtBBIPAp_gJMlzqab2InjI6r4kiohpPZsOfbm1SWxH7bTKvwj_iV-pBI3TrOanZmVdgh528D7BkBeZoCubRi0goGScmDqGTk0gnPGoRuekwMoUde94C_Jq5zvAUD0Q3cgv7-vJvu8BXuXYvC_TPEx0DjRhMaeZ-b8NK35zAZck5krlMeYfmT66MsdLX5B9mDS5sOROpzNlum40Vxqkr10WzCLtxQfMBRWkj8eMaGjNoaS4kxNcNSXTM3pNHu7Hy-RZrRrwqpaljU88a_Ji8nMGd884QW5_fTx5uoLu_72-evVh2tmm6FTTFnuRA-8FXwyILvRDi2OvXCjgqlXXHJrlZNGStm6VrRuMIijQxykA2c6fkHe7bmnFH-umIu-j2sK9aTmIFXfyV6eVe2usinmnHDSp-SX-gbdgD5XovdKdK1E_61Eq2riuylXcaif-Bf9H9cfgOiVFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079657675</pqid></control><display><type>article</type><title>Quasisynchronization of reaction-diffusion neural networks with time-varying delays by static/dynamic event-triggered control and its application to secure communication</title><source>SpringerLink Journals</source><creator>Cao, Yanyi ; Liu, Nian ; Zhang, Tao ; Zhang, Chuanfu</creator><creatorcontrib>Cao, Yanyi ; Liu, Nian ; Zhang, Tao ; Zhang, Chuanfu</creatorcontrib><description>This paper studies the quasisynchronization problems of reaction-diffusion neural networks (RDNNs) with time-varying delays via event-triggered control. Firstly, a static event-triggered mechanism and a dynamic event-triggered mechanism are designed to significantly reduce computation costs and save communication resources, respectively. These two different event-triggered control strategies are also able to meet the requirements of various situations. Based on the static event-triggered mechanism, the dynamic event-triggered mechanism is designed to further reduce the sampling frequency by introducing an internal dynamic variable, and several quasisynchronization criteria are derived. However, the quasisynchronization error bounds are related to triggering parameters and can be flexible adjusted, which reduces the conservatism of the existing quasisynchronization results and extends the application of proposed control strategies. Meanwhile, there exists positive lower bounds for the inter event time which can exclude the Zeno behavior. Finally, numerical simulations are given to demonstrate the superiority of the obtained theoretical results, and one example is given to show the chaotic quasisynchronization of the proposed RDNNs in the application of secure communication.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-09778-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Communication ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Event triggered control ; Image Processing and Computer Vision ; Lower bounds ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Time varying control</subject><ispartof>Neural computing &amp; applications, 2024-07, Vol.36 (21), p.13171-13186</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1859-9c3d4603243fa075bc82eb64db90f69373cc9d7a7772d242d8aeebdee87d0da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-024-09778-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-024-09778-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cao, Yanyi</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Chuanfu</creatorcontrib><title>Quasisynchronization of reaction-diffusion neural networks with time-varying delays by static/dynamic event-triggered control and its application to secure communication</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This paper studies the quasisynchronization problems of reaction-diffusion neural networks (RDNNs) with time-varying delays via event-triggered control. Firstly, a static event-triggered mechanism and a dynamic event-triggered mechanism are designed to significantly reduce computation costs and save communication resources, respectively. These two different event-triggered control strategies are also able to meet the requirements of various situations. Based on the static event-triggered mechanism, the dynamic event-triggered mechanism is designed to further reduce the sampling frequency by introducing an internal dynamic variable, and several quasisynchronization criteria are derived. However, the quasisynchronization error bounds are related to triggering parameters and can be flexible adjusted, which reduces the conservatism of the existing quasisynchronization results and extends the application of proposed control strategies. Meanwhile, there exists positive lower bounds for the inter event time which can exclude the Zeno behavior. Finally, numerical simulations are given to demonstrate the superiority of the obtained theoretical results, and one example is given to show the chaotic quasisynchronization of the proposed RDNNs in the application of secure communication.</description><subject>Artificial Intelligence</subject><subject>Communication</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Event triggered control</subject><subject>Image Processing and Computer Vision</subject><subject>Lower bounds</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Time varying control</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1TAQtBBIPAp_gJMlzqab2InjI6r4kiohpPZsOfbm1SWxH7bTKvwj_iV-pBI3TrOanZmVdgh528D7BkBeZoCubRi0goGScmDqGTk0gnPGoRuekwMoUde94C_Jq5zvAUD0Q3cgv7-vJvu8BXuXYvC_TPEx0DjRhMaeZ-b8NK35zAZck5krlMeYfmT66MsdLX5B9mDS5sOROpzNlum40Vxqkr10WzCLtxQfMBRWkj8eMaGjNoaS4kxNcNSXTM3pNHu7Hy-RZrRrwqpaljU88a_Ji8nMGd884QW5_fTx5uoLu_72-evVh2tmm6FTTFnuRA-8FXwyILvRDi2OvXCjgqlXXHJrlZNGStm6VrRuMIijQxykA2c6fkHe7bmnFH-umIu-j2sK9aTmIFXfyV6eVe2usinmnHDSp-SX-gbdgD5XovdKdK1E_61Eq2riuylXcaif-Bf9H9cfgOiVFw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Cao, Yanyi</creator><creator>Liu, Nian</creator><creator>Zhang, Tao</creator><creator>Zhang, Chuanfu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Quasisynchronization of reaction-diffusion neural networks with time-varying delays by static/dynamic event-triggered control and its application to secure communication</title><author>Cao, Yanyi ; Liu, Nian ; Zhang, Tao ; Zhang, Chuanfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1859-9c3d4603243fa075bc82eb64db90f69373cc9d7a7772d242d8aeebdee87d0da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Communication</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Event triggered control</topic><topic>Image Processing and Computer Vision</topic><topic>Lower bounds</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Time varying control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yanyi</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhang, Chuanfu</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yanyi</au><au>Liu, Nian</au><au>Zhang, Tao</au><au>Zhang, Chuanfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasisynchronization of reaction-diffusion neural networks with time-varying delays by static/dynamic event-triggered control and its application to secure communication</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>36</volume><issue>21</issue><spage>13171</spage><epage>13186</epage><pages>13171-13186</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper studies the quasisynchronization problems of reaction-diffusion neural networks (RDNNs) with time-varying delays via event-triggered control. Firstly, a static event-triggered mechanism and a dynamic event-triggered mechanism are designed to significantly reduce computation costs and save communication resources, respectively. These two different event-triggered control strategies are also able to meet the requirements of various situations. Based on the static event-triggered mechanism, the dynamic event-triggered mechanism is designed to further reduce the sampling frequency by introducing an internal dynamic variable, and several quasisynchronization criteria are derived. However, the quasisynchronization error bounds are related to triggering parameters and can be flexible adjusted, which reduces the conservatism of the existing quasisynchronization results and extends the application of proposed control strategies. Meanwhile, there exists positive lower bounds for the inter event time which can exclude the Zeno behavior. Finally, numerical simulations are given to demonstrate the superiority of the obtained theoretical results, and one example is given to show the chaotic quasisynchronization of the proposed RDNNs in the application of secure communication.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-09778-9</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2024-07, Vol.36 (21), p.13171-13186
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_3079657675
source SpringerLink Journals
subjects Artificial Intelligence
Communication
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Event triggered control
Image Processing and Computer Vision
Lower bounds
Neural networks
Original Article
Probability and Statistics in Computer Science
Time varying control
title Quasisynchronization of reaction-diffusion neural networks with time-varying delays by static/dynamic event-triggered control and its application to secure communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasisynchronization%20of%20reaction-diffusion%20neural%20networks%20with%20time-varying%20delays%20by%20static/dynamic%20event-triggered%20control%20and%20its%20application%20to%20secure%20communication&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Cao,%20Yanyi&rft.date=2024-07-01&rft.volume=36&rft.issue=21&rft.spage=13171&rft.epage=13186&rft.pages=13171-13186&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-09778-9&rft_dat=%3Cproquest_cross%3E3079657675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079657675&rft_id=info:pmid/&rfr_iscdi=true