Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems
The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark performance scores only allows for...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Caspari, Laura Kanishka Ghosh Dastidar Saber Zerhoudi Mitrovic, Jelena Granitzer, Michael |
description | The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark performance scores only allows for a weak assessment of model similarity. Thus, in this study, we evaluate the similarity of embedding models within the context of RAG systems. Our assessment is two-fold: We use Centered Kernel Alignment to compare embeddings on a pair-wise level. Additionally, as it is especially pertinent to RAG systems, we evaluate the similarity of retrieval results between these models using Jaccard and rank similarity. We compare different families of embedding models, including proprietary ones, across five datasets from the popular Benchmark Information Retrieval (BEIR). Through our experiments we identify clusters of models corresponding to model families, but interestingly, also some inter-family clusters. Furthermore, our analysis of top-k retrieval similarity reveals high-variance at low k values. We also identify possible open-source alternatives to proprietary models, with Mistral exhibiting the highest similarity to OpenAI models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3079558828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079558828</sourcerecordid><originalsourceid>FETCH-proquest_journals_30795588283</originalsourceid><addsrcrecordid>eNqNi80OATEURhuJhOAdbmItqdaYYYcMNjbYT2p6h9If2o5k3t5IPIDVd5Jzvg7pM86nk2zGWI-MQrhTStk8ZUnC-6RcY-OshDXa8maEf4Ql5G-haxGVvUJuLijllw5OooaTMkoLr2IDlfNwxOgVtjms6qtBG1HCDi369u0snJoQ0YQh6VZCBxz9dkDG2_y82U-e3r1qDLG4u9rbVhWcposkyTKW8f-qD-q8Rmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079558828</pqid></control><display><type>article</type><title>Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems</title><source>Freely Accessible Journals</source><creator>Caspari, Laura ; Kanishka Ghosh Dastidar ; Saber Zerhoudi ; Mitrovic, Jelena ; Granitzer, Michael</creator><creatorcontrib>Caspari, Laura ; Kanishka Ghosh Dastidar ; Saber Zerhoudi ; Mitrovic, Jelena ; Granitzer, Michael</creatorcontrib><description>The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark performance scores only allows for a weak assessment of model similarity. Thus, in this study, we evaluate the similarity of embedding models within the context of RAG systems. Our assessment is two-fold: We use Centered Kernel Alignment to compare embeddings on a pair-wise level. Additionally, as it is especially pertinent to RAG systems, we evaluate the similarity of retrieval results between these models using Jaccard and rank similarity. We compare different families of embedding models, including proprietary ones, across five datasets from the popular Benchmark Information Retrieval (BEIR). Through our experiments we identify clusters of models corresponding to model families, but interestingly, also some inter-family clusters. Furthermore, our analysis of top-k retrieval similarity reveals high-variance at low k values. We also identify possible open-source alternatives to proprietary models, with Mistral exhibiting the highest similarity to OpenAI models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Cluster analysis ; Clusters ; Embedding ; Information retrieval ; Performance evaluation ; Similarity ; Systems analysis ; Variance analysis</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Caspari, Laura</creatorcontrib><creatorcontrib>Kanishka Ghosh Dastidar</creatorcontrib><creatorcontrib>Saber Zerhoudi</creatorcontrib><creatorcontrib>Mitrovic, Jelena</creatorcontrib><creatorcontrib>Granitzer, Michael</creatorcontrib><title>Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems</title><title>arXiv.org</title><description>The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark performance scores only allows for a weak assessment of model similarity. Thus, in this study, we evaluate the similarity of embedding models within the context of RAG systems. Our assessment is two-fold: We use Centered Kernel Alignment to compare embeddings on a pair-wise level. Additionally, as it is especially pertinent to RAG systems, we evaluate the similarity of retrieval results between these models using Jaccard and rank similarity. We compare different families of embedding models, including proprietary ones, across five datasets from the popular Benchmark Information Retrieval (BEIR). Through our experiments we identify clusters of models corresponding to model families, but interestingly, also some inter-family clusters. Furthermore, our analysis of top-k retrieval similarity reveals high-variance at low k values. We also identify possible open-source alternatives to proprietary models, with Mistral exhibiting the highest similarity to OpenAI models.</description><subject>Benchmarks</subject><subject>Cluster analysis</subject><subject>Clusters</subject><subject>Embedding</subject><subject>Information retrieval</subject><subject>Performance evaluation</subject><subject>Similarity</subject><subject>Systems analysis</subject><subject>Variance analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80OATEURhuJhOAdbmItqdaYYYcMNjbYT2p6h9If2o5k3t5IPIDVd5Jzvg7pM86nk2zGWI-MQrhTStk8ZUnC-6RcY-OshDXa8maEf4Ql5G-haxGVvUJuLijllw5OooaTMkoLr2IDlfNwxOgVtjms6qtBG1HCDi369u0snJoQ0YQh6VZCBxz9dkDG2_y82U-e3r1qDLG4u9rbVhWcposkyTKW8f-qD-q8Rmk</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Caspari, Laura</creator><creator>Kanishka Ghosh Dastidar</creator><creator>Saber Zerhoudi</creator><creator>Mitrovic, Jelena</creator><creator>Granitzer, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240711</creationdate><title>Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems</title><author>Caspari, Laura ; Kanishka Ghosh Dastidar ; Saber Zerhoudi ; Mitrovic, Jelena ; Granitzer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30795588283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Cluster analysis</topic><topic>Clusters</topic><topic>Embedding</topic><topic>Information retrieval</topic><topic>Performance evaluation</topic><topic>Similarity</topic><topic>Systems analysis</topic><topic>Variance analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Caspari, Laura</creatorcontrib><creatorcontrib>Kanishka Ghosh Dastidar</creatorcontrib><creatorcontrib>Saber Zerhoudi</creatorcontrib><creatorcontrib>Mitrovic, Jelena</creatorcontrib><creatorcontrib>Granitzer, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caspari, Laura</au><au>Kanishka Ghosh Dastidar</au><au>Saber Zerhoudi</au><au>Mitrovic, Jelena</au><au>Granitzer, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-07-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The choice of embedding model is a crucial step in the design of Retrieval Augmented Generation (RAG) systems. Given the sheer volume of available options, identifying clusters of similar models streamlines this model selection process. Relying solely on benchmark performance scores only allows for a weak assessment of model similarity. Thus, in this study, we evaluate the similarity of embedding models within the context of RAG systems. Our assessment is two-fold: We use Centered Kernel Alignment to compare embeddings on a pair-wise level. Additionally, as it is especially pertinent to RAG systems, we evaluate the similarity of retrieval results between these models using Jaccard and rank similarity. We compare different families of embedding models, including proprietary ones, across five datasets from the popular Benchmark Information Retrieval (BEIR). Through our experiments we identify clusters of models corresponding to model families, but interestingly, also some inter-family clusters. Furthermore, our analysis of top-k retrieval similarity reveals high-variance at low k values. We also identify possible open-source alternatives to proprietary models, with Mistral exhibiting the highest similarity to OpenAI models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3079558828 |
source | Freely Accessible Journals |
subjects | Benchmarks Cluster analysis Clusters Embedding Information retrieval Performance evaluation Similarity Systems analysis Variance analysis |
title | Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Beyond%20Benchmarks:%20Evaluating%20Embedding%20Model%20Similarity%20for%20Retrieval%20Augmented%20Generation%20Systems&rft.jtitle=arXiv.org&rft.au=Caspari,%20Laura&rft.date=2024-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3079558828%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079558828&rft_id=info:pmid/&rfr_iscdi=true |