AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning
In recent years, advancements in representation learning and language models have propelled Automated Captioning (AC) to new heights, enabling the generation of human-level descriptions. Leveraging these advancements, we propose AVCap, an Audio-Visual Captioning framework, a simple yet powerful base...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kim, Jongsuk Shin, Jiwon Kim, Junmo |
description | In recent years, advancements in representation learning and language models have propelled Automated Captioning (AC) to new heights, enabling the generation of human-level descriptions. Leveraging these advancements, we propose AVCap, an Audio-Visual Captioning framework, a simple yet powerful baseline approach applicable to audio-visual captioning. AVCap utilizes audio-visual features as text tokens, which has many advantages not only in performance but also in the extensibility and scalability of the model. AVCap is designed around three pivotal dimensions: the exploration of optimal audio-visual encoder architectures, the adaptation of pre-trained models according to the characteristics of generated text, and the investigation into the efficacy of modality fusion in captioning. Our method outperforms existing audio-visual captioning methods across all metrics and the code is available on https://github.com/JongSuk1/AVCap |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3079558827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079558827</sourcerecordid><originalsourceid>FETCH-proquest_journals_30795588273</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MC5EBNjq1spLQ6OpasEfC2pJal5ifj5dvADnG64uxVLhJSHrDgKsWEp0cg5F6dcKCUTVpddpecL3PCNXg_GDlDGh3FZZyjqCRrUIXok0AQtfgK07omWoHceljEYZ5dnx9a9ngjTH7ds39Rtdc1m714RKdxHF71d1F3y_KxUUYhc_ld9AQUYOjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079558827</pqid></control><display><type>article</type><title>AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning</title><source>Free E- Journals</source><creator>Kim, Jongsuk ; Shin, Jiwon ; Kim, Junmo</creator><creatorcontrib>Kim, Jongsuk ; Shin, Jiwon ; Kim, Junmo</creatorcontrib><description>In recent years, advancements in representation learning and language models have propelled Automated Captioning (AC) to new heights, enabling the generation of human-level descriptions. Leveraging these advancements, we propose AVCap, an Audio-Visual Captioning framework, a simple yet powerful baseline approach applicable to audio-visual captioning. AVCap utilizes audio-visual features as text tokens, which has many advantages not only in performance but also in the extensibility and scalability of the model. AVCap is designed around three pivotal dimensions: the exploration of optimal audio-visual encoder architectures, the adaptation of pre-trained models according to the characteristics of generated text, and the investigation into the efficacy of modality fusion in captioning. Our method outperforms existing audio-visual captioning methods across all metrics and the code is available on https://github.com/JongSuk1/AVCap</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kim, Jongsuk</creatorcontrib><creatorcontrib>Shin, Jiwon</creatorcontrib><creatorcontrib>Kim, Junmo</creatorcontrib><title>AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning</title><title>arXiv.org</title><description>In recent years, advancements in representation learning and language models have propelled Automated Captioning (AC) to new heights, enabling the generation of human-level descriptions. Leveraging these advancements, we propose AVCap, an Audio-Visual Captioning framework, a simple yet powerful baseline approach applicable to audio-visual captioning. AVCap utilizes audio-visual features as text tokens, which has many advantages not only in performance but also in the extensibility and scalability of the model. AVCap is designed around three pivotal dimensions: the exploration of optimal audio-visual encoder architectures, the adaptation of pre-trained models according to the characteristics of generated text, and the investigation into the efficacy of modality fusion in captioning. Our method outperforms existing audio-visual captioning methods across all metrics and the code is available on https://github.com/JongSuk1/AVCap</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MC5EBNjq1spLQ6OpasEfC2pJal5ifj5dvADnG64uxVLhJSHrDgKsWEp0cg5F6dcKCUTVpddpecL3PCNXg_GDlDGh3FZZyjqCRrUIXok0AQtfgK07omWoHceljEYZ5dnx9a9ngjTH7ds39Rtdc1m714RKdxHF71d1F3y_KxUUYhc_ld9AQUYOjE</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Kim, Jongsuk</creator><creator>Shin, Jiwon</creator><creator>Kim, Junmo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240711</creationdate><title>AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning</title><author>Kim, Jongsuk ; Shin, Jiwon ; Kim, Junmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30795588273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jongsuk</creatorcontrib><creatorcontrib>Shin, Jiwon</creatorcontrib><creatorcontrib>Kim, Junmo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jongsuk</au><au>Shin, Jiwon</au><au>Kim, Junmo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning</atitle><jtitle>arXiv.org</jtitle><date>2024-07-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In recent years, advancements in representation learning and language models have propelled Automated Captioning (AC) to new heights, enabling the generation of human-level descriptions. Leveraging these advancements, we propose AVCap, an Audio-Visual Captioning framework, a simple yet powerful baseline approach applicable to audio-visual captioning. AVCap utilizes audio-visual features as text tokens, which has many advantages not only in performance but also in the extensibility and scalability of the model. AVCap is designed around three pivotal dimensions: the exploration of optimal audio-visual encoder architectures, the adaptation of pre-trained models according to the characteristics of generated text, and the investigation into the efficacy of modality fusion in captioning. Our method outperforms existing audio-visual captioning methods across all metrics and the code is available on https://github.com/JongSuk1/AVCap</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3079558827 |
source | Free E- Journals |
title | AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AVCap:%20Leveraging%20Audio-Visual%20Features%20as%20Text%20Tokens%20for%20Captioning&rft.jtitle=arXiv.org&rft.au=Kim,%20Jongsuk&rft.date=2024-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3079558827%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079558827&rft_id=info:pmid/&rfr_iscdi=true |